APRIL 2017

Analysis Of a vierating string under
tension with MC

INtroduction

XC is a finite element program oriented
to civil engineering. It is conceived as
Open Source Software since we are de-
veloping it on the strong foundations of
OpenSees and making heavy use of other
0SS like Python, VTK and CGAL.

This case study deals with a flexible

Figure 1: Waves

on a harp (retrieved from
www.dslrvideocollege.com)

Ana Ortega, Luis C. Pérez Tato

string fixed at the ends and stretched to
an initial strain. The aim is to determine
the first three natural frequencies of lat-
eral vibration of the stretched string.

Theoretical introduction

Any motion of a linear system can be resolved into a
superposition of modes, combined with appropriate am-
plitudes and phases [2]. Modes are special pattern of mo-
tions that have the property that at any point the object
moves perfectly sinusoidally and that all points move at
the same frequency (if conditions, e.g. stiffness, bound-
aries, ..., do not change in time).

Our example deals with a one-dimensional wave con-
fined in the two ends of a string. The general solution for
the motion is the sum of two functions, F(x — ct) and
G(x+ct), the first representing a wave travelling one way
in the string, and the second a wave travelling the other
way in the string:

y=F(x—ct)+ Gz +ct) (1)

We have to satisfy the conditions that the string does not
move at both ends. If we firstly put = 0 in Eq. [T} we get
y = F(—ct) 4+ G(ct) and, if this is to be zero for all times,
it means that G(ct) must be —F(—ct). Putting back this

result into Eq. [T} we find

y=F(zx—ct)— F(—x — ct) (2)

The Eq. 2 found for the total motion of the string can
be regarded as the sum of two waves in the region of pos-
itive x, as shown in figure [2 The first wave travels in the
negative x-direction, and the second one (hypothetical)
travels in the other direction, reversed in sign and on the
other side of the origin. As they reach the origin, they
always cancel at x=0, and finally the second (reflected)
wave will be the only one to exist for positive x and it
will, be travelling in the opposite direction.

If the wave is periodic, Eq. [2| can be expressed as:

y=F(x—ct)— F(—z—ct) =
eiw(t—w/o) _ eiw(t+ac/c) _ (3)
— 2ie™* sin(wx/c)
In this solution, for any point x, the string oscillates
at the same frequency w. Points with no motion, called

XC finite element OSS
= |Ana Ortega

# XC news
= Luis Pérez Tato

# XC source in GitHub| @

XC doxygen doc  # XC sphinx doc

Page 1


https://sites.google.com/site/xcfemanalysis
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
https://lcpt.github.io/XCmanual/
mailto:ana.ortega@ciccp.es
mailto:l.pereztato@ciccp.es

wx
nodes, must satisfy the condition sin(—) = 0, which
c

wx
means that — =0, m, 27, --- ,nmw,---.

In our cage, the string is held at both ends, say at
x=0 and x=L. For having a periodic sinusoidal motion,
the only possibility is that the sine wave must just fit
into the string length; in that case, it will continue to
keep that perfect shape of a sine wave and will oscillate
harmonically at some frequency.

wzr
We can write y = sin (—) for the shape. To keep
c

L
both ends fixed, it must be sin (w?) = 0 and therefore

wlL
— =nm.

So, the string can have sinusoidal motions, but only
at certain frequencies,

nme
w=—
L
that are a property of the particular system and the na-

ture of its boundaries

| | | L l%' h

i | . T HEFCY
{1 Hekadl & L ‘_':__ Ty \
NEBEZED |
| ] i L =
—t ~' |
! | '
| WER
: 1 | |
| YLV ] :
s —t ™
| it wl | -]
I___ il -1 [
| | [ ] =
| | |
| / | | | |
e 56 1 I
| ] |
| o
|
— I

| 0] e o e G =i

| |
.f_i R ' . :

I | || r
YT TN

E - {1 -

Figure 2: Reflection of a wave

Modes of virration of a string under
tension

Let’s say a flexible string of mass p per unit length is
stretched under tension 7. By assuming the lateral de-
flection y of the string to be small, the change in tension
with deflection is negligible and can be ignored.

T

Figure 3: String element under tension

In Fig.[3]a free-body diagram of an elementary length
dzx of the string is shown. Assuming small deflections and
slopes, the equation of motion in y direction is

Fy=m-a,
00 0%y
T(0+ %daz) —T0 =pdzx - T
T- %daz =pdx - @ @
ox ot?
08 p 0%y
oz T o

Since the slope of the string is § = %, the equation

reduces to , ,
0 1 9
9vy_~- 99 (5)
ox?2 2 0Ot?

where ¢ = \/T/p can be shown to be the velocity of
wave propagation along the string.

The equation [5| can be solved by separation of vari-
ables, assuming the solution in the form:

y(a,t) =Y(x) - G(t)

By substitution into Eq[5] we obtain:

2y 1 d2G
Tdzz T2 T ae
6
1 d2Y_1 1 d?G ©)
Y dr2 2 G di?

Since the left side of this equation is independent of ¢,
whereas the right side is independent of z, each side must

2
w

be a constant. Letting this constant be equal to — <—> ,
c

XC finite element OSS ~ # XC news
= |Ana Ortega. = Luis Pérez Tato

# XC source in GitHub| # XC doxygen doc

# XC sphinx doc
Page 2


https://sites.google.com/site/xcfemanalysis
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
https://lcpt.github.io/XCmanual/
mailto:ana.ortega@ciccp.es
mailto:l.pereztato@ciccp.es

we obtain two ordinary differential equations

d2Y+ <w>2 Y —0
dx? e T
, (7)
26
W—Fw G =0

with the general solutions

w w
Y =A-sin(—x) + B - cos(—x
(Z2) (-2 @®)

G =C -sin(wt) + D - cos(wt)

The arbitrary constants A, B,C,D depend on the
boundary conditions and the initial conditions. In the
case of a string stretched between two fixed points sepa-
rated a distance L, the boundary conditions are y(0,t) =
y(L,t) = 0. The condition that y(0,t) = 0 requires that
B =0, and

y = (C -sin(wt) + D - cos(wt)) - sin(gx) (9)
c

The condition y(L,t) = 0 requires that sin(%) =0,

or

wpl  2mL 193 (10)
c - A - n7r7 n= ) Y )
where A = £ is the wavelength and f is the frequency

of oscillation. Each n represents a normal mode vibration
with natural frequency determined from the equation

n n [T

fn N

= —C = — :12 ...
2Lc 2L pa n ) 737

(11)

The mode shape is sinusoidal with the distribution

Y =si ’
— Sin nﬂ'z

Test case solved with MC

A uniform steel string of length L = 2m is fixed at
the ends and stretched to an initial strain ¢y = 0.005.
Its geometric and material properties are represented in
figure [l The goal is to determine its first three natural
frequencies of lateral vibration.

(12)

Esteel = 2.1ell Pa
Psteel = 7850 kg/m3
Lstring = 20 m
Across section — 2.0e-6 m?

€0 = 5%0

. R .
e @{:ﬁmﬂnﬁ e
- Jd.dd PRI W g

i = - l
|
I

e o |

Figure 4: String, geometric and material properties

Under these conditions, the stress and force in the
string will be:

0 = Fgteer X ¢g = 1050e6Pa

F=0x Across section = 2100.0N

and the mass per unit length:
Pstring = Psteel X Across section — 00157kg/m

T
By applying Eq. [11| for n= 1,2,3 with ¢ = =
Pstring
365.7 m/s, we obtain the exact value of the first three

frequencies:

1
= —c=91.432H
f 57¢ 91.432H =
2
fa= 2I¢= 182.865H =
3
f3= 5I¢= 274.297H z

XC model

The input python script that solves the present case
in XC can be found at the end of this document.

To build the FE model, two points at the ends of the
string are created and linked by a line. A material of type
cable is defined, giving as input the elastic modulus, pre-
stress and mass per unit length. The element used to mesh
the line is of type corotational truss. Nodes in the ends of
the string are constrained in all of their degrees of free-
dom.

The following step is to define the analysis type and
its options.

XC inherit from OpenSees the objects responsible for
performing the analysis. For a general transient dynamic
analysis, the basic equation of motion to be solved is

[M{i} + [C{a} + [K]{u} = {F(t)} (13)

where,

[M] = mass matrix

[C] = damping matrix

[K] = stiffness matrix
{@i} = nodal acceleration vector
{@} = nodal velocity vector
{u} = nodal displacement vector
{F(t)} = load vector

The component classes involved in the analysis consist
of the following:

XC finite element OSS  # XC news
= |Ana Ortega. = Luis Pérez Tato

# XC source in GitHub, # XC doxygen doc

# XC sphinx doc
Page 3


https://sites.google.com/site/xcfemanalysis
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
https://lcpt.github.io/XCmanual/
mailto:ana.ortega@ciccp.es
mailto:l.pereztato@ciccp.es

REFERENCES

ConstraintHandler determines how the constraint equa-
tions are enforced in the analysis, that is, how it
handles the boundary conditions and imposed dis-
placements.

DOF_Numberer determines the mapping between equa-
tion numbers and degrees of freedom, or how the
DOF are numbered.

AnalysisModel defines the type of analysis to be per-
formed.

Integrator determines the predictive step for time ¢ + dt.

SolutionAlgorithm determines the sequence of steps
taken to solve the non-linear equation at the cur-
rent time step

SystemOfEqn/Solver within the solution algorithm, it
specifies how to store and solve the sytem of equa-
tions in the analysis

Firstly, a static analysis is performed. The load is ap-
plied in 10 steps and the static equilibrium is obtained
iteratively in multiple steps using the Newton-Raphson
solution algorithm. The prestressing force is obtained for
the elements.

Next, a modal analysis is performed to get the first
eigenvalues.

References

REFERENCES

In this problem, we have only homogeneous single-
point boundary constraints, this is why the plain handler
is used as ConstraintHandler. For other non-homogeneus
constraints, like imposed motions, multi support excita-
tion, etc, penalty, Lagrange multipliers and transforma-
tion methods are available.

For this small problem, a plain numberer is used to
assign the DOF to the nodes; for larger models the al-
gorithm RCM (Reverse Cuthill-McKee), that optimizes
node numbering and reduces bandwidth, could be a
preferable option. A symmetric positive definite banded
system of equations is factored and solved during the anal-
ysis.

By performing a frequency analysis using the eigen
solver, the three natural frequencies were calculated as
91.338, 182.114 and 271.766 Hz respectively, which ap-
proximate the target values with an accuracy greater than
99%.

Quantity Target XC result Ratio
o 1050 MPa | 1049.999 MPa | ~ 1.000
F 2100.0 N 2099.999 N | ~ 1.000
f 91.432 Hz 91.338 Hz 0.999
fo 182.865 Hz 182.114 Hz 0.996
f3 274.297 Hz 271.766 Hz 0.991

[1] Silvia Mazzoni Frank McKenna Michael H. Scott Gregory L. Fenves et al. Opensees command language manual.
Technical report, Earthquake Engineering Research Center. College of Engineering. University of California,

Berkeley, 2006.

[2] Sands Feynman, Leighton. The Feynman Lectures on Physics, Volume I. Caltech.

[3] William T. Thomson. Theory of vibration with applications, second edition. George Allen & Unwin.

XC finite element OSS
=1 Ana Ortega

# XC news
1 Luis Pérez Tato

# XC source in GitHub

# XC doxygen doc

# XC sphinx doc
Page 4


https://sites.google.com/site/xcfemanalysis
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
https://lcpt.github.io/XCmanual/
mailto:ana.ortega@ciccp.es
mailto:l.pereztato@ciccp.es

test string_under_tension.py 1/2
~/booksAndAriclesCaricles/vibration_string_under_tension/ 31/0317

o ncigs of lataral wibhra
a2, by Wl am T. I
m __futura__ import diwvision
xc_bane
gaom
o
m model import fix_node Zdof
m model import fix_nodes linas
m model import predefloed spaces
m materials lmpoort typleoal _naterclials
nath
Liw= Z0 ¢
= 2.1lmll §
1 J ¢ At m
Qg n=0.305% ¢
3 Zm—4 ¢ mz
e Es=TE50 ¢
Mass= mOans*acas ¢ kosfm
LE rat= E*apsllon ¢ o
EE = sigmeaPreat*area ¢
£ * MWodal *
FEcase= xc.ProblemaEF ()
preprocesacr=  FEocasa.getFreprocassosr
leg= proprooessor.caticdaloadar
f Frohlen type
predefined spaoes_gdls_reslst _naterlaleszi (nodes)
nodes  nowdaadbc-ae | |
F Mate 13 dafinlbld
tyvplco nl_rmt-:l. lals. dnn’.‘:l:ln‘l-mtnri:l-:[::nprn assor, "cable”, B, sigmaFrat, Massa)

prnpl- =350T - gatElement Loader . seedE lamLoader

terials "cablae®
I 1= 1 #Tag for the next elsnant.
LI :nn:lEl-:-ann-:lm newElenent ("oorot_truss®, 2o I0([0,0]]]
truss._ argas aces
f Folnts and 1irnes

ints= preaprocessor.geatTad.getPolnts
polnta. newFRntIOPcaidi{l,geon.Fox2d |0 0
polnta.nawFntIODPCca3ddz, geon.Pos3d 1,0
125 PrEProCcRssOr. petCad.getLings

[= =]
. .
oo

NS Jelaultlag=

1= limes. nawline 1,25
Eiw= Numdiwv

1= preprocaascr.getiats.getdab (S117)
11 .genMosh (xc .meshiir. Iy

zoolOones= preprocesscr.getlConstralntloadec
Eix_n n*n_-l_l ines.conatraintsForlineEst renealcdes |11, coacolones, E1x_node_3dof . £1xModedan)
Fix_nodes_lines JonstralntsForlinelnteriorNodes [11; coacolones, Fix_node_3dcof . flxNodaFFD)
£ *Ebakbic analy
Natep= 10 &

L 1./Natap 4

= FEcasa.gatEoluProc
17t rl= molu.getEoluCont rol
1Mode1a= =o0lftrl . getModelNrappartontalingr

BRI =]

m= solWodels.newModelWcapper [Famt)



test string_under_tension.py
~/booksAndAriclesCaricles/vibration_string_under_tension/

31/0317

am.0ewlonatraintHandler ("Elain_handler®)
numberer=s am.newlunbarer*default_nuombeorarc®)
numbarer.usshlgorichm (" simole®)

aclMethoda= aclCtrl_gatEcluMethodContalinar
amt= solMethods  rewdcluMethod [Yamt®, "=sn¥)
sclhlgo= amt.newEolutionhlgorichmi new
test= skt .newlonvarganceTest [*norm_unk
test tol= la-A

gt maxlumlter= 104

j.dLanbdal=s BInc
= smt . nawdystemOIfEgn {"hand_gan
acluer=s sga.newEolver ("bard_gen
=1 3= molu.mewAnalysis |*static_analyais®, "sme®,

nteg= ant.nawlntegrator®load_coontrol
-

_ L
rasult= analysis. analyza(Nstap)
FResult s
alementos=s preprocesscr.getElenantLosdar
alel=s elenantos . getElament |1]
prestrF= wlal . getl (]
algma= elel.getMaterial {) .getdtrass(]
*Modal analyais*
trl= =mclu.getEoluControl
Models=s aclCirl .getMocdelNrappacriontalinar
solModals .newModalWrapper [*am®)

Handler= am.noewlonatraintHandler{"clain_handler®)
numberer= am.ewkdunberer {*default_numberer®)
numbarar . uashlgorithm " simpla™]
aclMethods= s3clCtrl gatScluMethodContainer
amt= solWathods_rewdclubethod [Famt?, "sn®]
aclhlgo= amt.newEoluticohlgorithmd " regquency_soln_algof)
integ= snt.nawlntegrator{®eslgan ~B.wo _Vackor([1_0,1,1.3,1_D11]11]
gca= smb . nawdystemOfEgn ("sym 1L 1.9 =20 ")
aclvers sgoa.newEolwar (®sym_h _=aig lwar™)

analysias=s sclu.newAnalysis |"eigen_analysis®, fsmb®, # 8y
analfk= analysis.analyze(3)

lta

analysis. getEiganvaloe (1)
analyais.getEiganvaloe [Z]
analysis. getEiganvaloe [3)
math.agrt (elgl] f (2*math.pi]
makth.agrt (elgz] f (2*math.pi]
math.agrt (@lg2] f (2*math_pi]

R

3

oe= ¥, praatcF




