
tutorials

Ana Ortega, Luis Pérez Tato

Tutorial 2. Analysis of a vibrating string under
tension.

This tutorial deals with a flexible string fixed at the ends and stretched to
an initial strain. The goal is to find its first three natural frequencies of lateral
vibration.

In the example, a uniform steel string of length L = 2m and cross-sectional
area A = 2.0e − 6m2, is fixed at the ends and stretched to an initial strain
ε0 = 0.005. The Young’s modulus of steel is Es = 210 GPa and its specific
mass is ρs = 7850kg/m3.

Import modules. Firstly, we execute some import statements, so that the
code in our script gains access to the code in the imported modules.� �

1 from __future__ import division

2 import math

3 import xc_base

4 import geom

5 import xc

6 from model import predefined_spaces

7 from materials import typical_materials� �
Listing 1: Imported modules.

The future division statement (line 1) change, throughout the module, the /
operator to mean true division instead of returning the floor of the mathematical
result of division when the arguments are ints or longs (transitional measure
from Python 2.x to the standard meaning in Python 3.0).

The math module (line 2) provides access to several mathematical functions
(floor, exp, sqrt, cos, sin . . . ).

The following three lines correspond with three main modules of XC :

• xc_base: includes the basic functions for the Python interface: assign and
retrieve properties stored in the C++ classes (see example test_evalPy.py)
and execute Python scripts (see example test_execPy.py).

• geom: handles entities related to geometry, like points, lines, polylines,
planes, polygons, circles, coordinate systems, grids, vectors, matrices, ro-
tations, translations, . . .

• xc: this module provides access to the finite element classes and functions:
mesh generation, element type and material definition, analysis, . . .

Import statements in lines 6-7 have to do with the following modules:

• predefined_spaces: this module is intended to set the dimension of the
space and the number of nodal DOF, as well as to introduce constraints
to them.

• typical_materials: several often-used materials are predefined in this
module: elastic uniaxial with or without tension branch, prestressed cable,
concrete, steel, . . .

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 1

http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es


tutorials

Definition of parameters. XC allows full parametric models, that’s to say,
the definition of geometry, material, loads, . . . , can be based on properties that,
if your data change, the problem is recalculated accordingly.

Lines 8 to 14 set the value of the parameters which will be used later during
the model generation.� �

8 E= 2.1e11 # steel Young modulus [Pa]
9 ro =7850 #steel specific mass [kg/m3]

10 l= 2.0 # String length [m]
11 sigmaPret= E*0.005 # Prestressing stress [Pa]
12 area= 2.0e-6 # Cross−sectional area [m2]
13 Mass= ro*area # Mass per unit length [kg/m]
14 NumDiv= 13 #number of elements� �

Listing 2: Parameters.

Finite element problem. The type of problem defined is StructuralMechan-
ics2D (line 18), that’s to say, nodes are defined by two coordinates (x,y) and
has three degrees of freedom (ux, uy, θ). This function takes as argument the
handler of nodes, that is retrieved from preprocessor in line 17.� �

15 feProblem= xc.FEProblem ()

16 preprocessor= feProblem.getPreprocessor

17 nodes= preprocessor.getNodeHandler

18 modelSpace= predefined_spaces.StructuralMechanics2D(nodes)� �
Listing 3: FE problem type.

Definition of material The material defined in line 19 is an elastic uniax-
ial material that can not withstand compression. Its strain-stress relationship
ranges from slack (large strain at zero stress) to taught (linear with modulus
E). The method takes as parameters the preprocessor, a name that we’ll use to
assign this material to the elements, its Young’s modulus, the prestressing force
and the mass per unit length.� �

19 typical_materials.defCableMaterial(preprocessor , "cable",E,

sigmaPret ,Mass)� �
Listing 4: Materials.

→ Find out more about materials in XC

Definition of the element type. The type of element used lately to mesh
the model is defined in lines 20 to 25. It is a two-dimensional co-rotational
truss, allowed to have large displacements and rotations at the global level by
means of the co-rotational formulation. This formulation seeks to separate rigid
body motions (rotation and translation) from strain producing deformations at
the local element level. A co-rotating frame is attached to the truss with origin
at its first node and x-axis directed along the element. This local coordinate
system translates and rotates with the truss, so that with respect to it only local
strain producing deformations along the x-axis remains.

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 2

http://www.xcengineering.xyz/sphinx_doc/XCmanual/preprocessor/material.html
http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es


tutorials

� �
20 seedElemHandler= preprocessor.getElementHandler.

seedElemHandler

21 seedElemHandler.defaultMaterial= "cable"

22 seedElemHandler.dimElem= 2 # Dimension of element space
23 seedElemHandler.defaultTag= 1 #Tag for the next element.
24 truss= seedElemHandler.newElement("CorotTruss",xc.ID([0 ,0]))

25 truss.area= area� �
Listing 5: Element type.

→ Find out more about element types in XC

Definition of the points and lines. Two points and the line joining them
is created in lines of code 26 to 31.� �

26 points= preprocessor.getMultiBlockTopology.getPoints

27 pt1= points.newPntIDPos3d (1,geom.Pos3d (0.0 ,0.0 ,0.0))

28 pt2= points.newPntIDPos3d (2,geom.Pos3d(l,0.0 ,0.0))

29 lines= preprocessor.getMultiBlockTopology.getLines

30 lines.defaultTag= 1

31 l= lines.newLine(pt1.tag ,pt2.tag)� �
Listing 6: Points and lines.

Meshing The line created is meshed using the type of element defined in
listing 5 and set as default. The number of elements created is given by the
number of divisions in the line, defined by means of its attribute nDiv.� �

33 l.nDiv= NumDiv

34 l.genMesh(xc.meshDir.I)� �
Listing 7: Mesh.

Definition of constraints. Lines 34 and 35 introduce single-point boundary
constraints in the extreme nodes of the line, restraining all the three degrees of
freedom (000→ ux = 0, uy = 0, θ = 0) in the start node and only rotation (FF0
→ ux = free, uy = free, θ = 0) in the end node.� �

34 predefined_spaces.ConstraintsForLineExtremeNodes(l,modelSpace.

fixNode000)

35 predefined_spaces.ConstraintsForLineInteriorNodes(l,modelSpace

.fixNodeFF0)� �
Listing 8: Constraints.

→ Find out more about boundary conditions in XC

Obtaining static solution. In lines 36 to 57 the static analysis is defined and
performed. XC is provided with some pre-defined solvers, available in module
typical_analysis. In this example, all the components that integrate the
analysis are detailed one by one. The first four lines refer to the creation of
the model-wrapper and the analysis-aggregation containers. The first one is a

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 3

http://www.xcengineering.xyz/sphinx_doc/XCmanual/preprocessor/cpp_classes/domain/elem_types.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/preprocessor/boundary_conditions.html
http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es


tutorials

container of domain, analysis, constraint handler and DOF-numberer, and has
to do with the finite element model “through the eyes” of the solver. The second
one is a container to which aggregate the model wrapper and other components
of the analysis definition.

In line 42 a model wrapper is created for the new analysis. Then, a con-
straint handler of type plain_handler is added to it. That handler determines
how the constraint equations are enforced in the analysis, and may be able of
managing single-point constraints (g.e. support conditions) or multi-point con-
straints. The use of multi-point constraints can arise in a FE model, g.e., to
enforce an equal-displacement behavior (i.e. translations and/or rotations at
different nodes are constrained to be equal), to impose a rigid body behavior
(i.e., displacements at different nodes are related as it connected by rigid links),
or to reproduce symmetry and antisymmetry conditions. The plain-constraint
handler used in the example can enforce homogeneous single point constraints
and multi-point constructed where the constraint matrix is equal to the identity.

Next, the DOF numberer is added to the model wrapper. That object de-
termines how the degrees of freedom are numbered. As the problem is small,
a plain numberer (simple) is chosen, which means that the numberer takes
the nodes whatever the order the domain gives them and numbers those nodes
consequently.� �

36 solProc=feProblem.getSoluProc

37 solCtrl= solProc.getSoluControl

38 solModels= solCtrl.getModelWrapperContainer

39 analAggrContainer= solCtrl.getAnalysisAggregationContainer

40 #static analysis
41 sm= solModels.newModelWrapper("sm")

42 cHandler= sm.newConstraintHandler("plain_handler")

43 numberer= sm.newNumberer("default_numberer")

44 numberer.useAlgorithm("simple")

45 analysisAggregation= analAggrContainer.newAnalysisAggregation(

"analysisAggregation","sm")

46 solAlgo= analysisAggregation.newSolutionAlgorithm("

newton_raphson_soln_algo")

47 ctest= analysisAggregation.newConvergenceTest("

norm_unbalance_conv_test")

48 ctest.tol= 1e-8

49 ctest.maxNumIter= 100

50 integ= analysisAggregation.newIntegrator("

load_control_integrator",xc.Vector ([]))

51 Nstep= 10 # apply load in 10 steps
52 DInc= 1./ Nstep # first load increment
53 integ.dLambda1= DInc

54 soe= analysisAggregation.newSystemOfEqn("band_gen_lin_soe")

55 solver= soe.newSolver("band_gen_lin_lapack_solver")

56 analysis= solProc.newAnalysis("static_analysis","

analysisAggregation","")

57 result= analysis.analyze(Nstep)� �
Listing 9: Static solution.

In line of code number 46, the solution algorithm is defined. That algorithm
determines the sequence of steps taken to solve the non-linear equation; for this
case the well-known Newton-Raphson method is applied, i.e. the set of nonlinear
equations is locally linearized and solved. If the solution does not satisfy the
original nonlinear equations, the latter are again linearized at the new solution.

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 4

http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es


tutorials

A convergence criterion is defined in line 47 to determine if convergence
has been achieved at the end of an iteration step. The norm unbalance test
uses the norm of the right hand side of the matrix equation for comparison.
The tolerance adopted is 1e-8 and the maximum number of iterations to check
before failure condition is taken equal to 100.

Next, an integrator object is defined (lines 50 to 53), which will be involved
in the numerical integration required by the computation of the stiffness matrix
and load vectors. The integrator is used to determine the predictive step for
time t+dt (in the example the set value of load factor increment is 1/10), to
specify the tangent matrix and residual vector at any iteration, and to determine
the corrective step based on the displacement increment.

Lines 54 and 55 define the algorithm used to solve the global equations. The
method chosen corresponds to a matrix system that has a banded profile. When
a solution is required, the Lapack (Linear Algebra Package) routines are used.

Finally a static analysis is performed in ten steps.
→ Find out more about analysis in XC

Review results of static analysis. We ask one element of the string its
stress and axial internal force.� �

57 elements= preprocessor.getElementHandler

58 ele1= elements.getElement (1)

59 tension= ele1.getN()

60 sigma= ele1.getMaterial ().getStress ()

61 print "stress= ",sigma

62 print "tension= ",tension� �
Listing 10: Results static analysis.

The result must be:

σ = Es × ε0 = 1050e6Pa

F = σ ×Across section = 2100.0N

Obtaining eigensolution. A modal analysis is performed in order to get
the first three eigenvalues. The mapping between the degrees of freedom and
the equation numbers is performed by using an rcm numberer (reverse Cuthill-
McKee algorithm). To solve the problem an algorithm frequency_soln_algo,
appropriate for solving standard eigenvalue equations, is used.� �

63 sm= solModels.newModelWrapper("sm")

64 cHandler= sm.newConstraintHandler("

transformation_constraint_handler")

65 numberer= sm.newNumberer("default_numberer")

66 numberer.useAlgorithm("rcm")

67 analysisAggregation= analAggrContainer.newAnalysisAggregation(

"analysisAggregation","sm")

68 solAlgo= analysisAggregation.newSolutionAlgorithm("

frequency_soln_algo")

69 integ= analysisAggregation.newIntegrator("eigen_integrator",xc

.Vector ([1.0 ,1 ,1.0 ,1.0]))

70 soe= analysisAggregation.newSystemOfEqn("sym_band_eigen_soe")

71 solver= soe.newSolver("sym_band_eigen_solver")

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 5

http://www.xcengineering.xyz/sphinx_doc/XCmanual/solution/cpp_classes/analysis.html
http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es


tutorials

72 analysis= solProc.newAnalysis("eigen_analysis","

analysisAggregation","")

73 Neigen =3

74 analOk= analysis.analyze(Neigen)� �
Listing 11: Eigensolution.

→ Find out more about analysis in XC

Review results of eigenanalysis. Finally, we check the results outcome
from the eigenvalue calculation.� �

77 eig1= analysis.getEigenvalue (1)

78 eig2= analysis.getEigenvalue (2)

79 eig3= analysis.getEigenvalue (3)

80 f1= math.sqrt(eig1)/(2* math.pi)
81 f2= math.sqrt(eig2)/(2* math.pi)
82 f3= math.sqrt(eig3)/(2* math.pi)
83 print "eig1= ",eig1

84 print "eig2= ",eig2

85 print "eig3= ",eig3

86 print "f1= ",math.sqrt(eig1)/(2* math.pi)
87 print "f2= ",math.sqrt(eig2)/(2* math.pi)
88 print "f3= ",math.sqrt(eig3)/(2* math.pi)� �

Listing 12: Results eigenanalysis.

The natural frequencies for a string under conditions such as those in this ex-
ample, can be obtained by:

fn =
n

2L

√
T

ρ
, n = 1, 2, 3, · · ·

By applying this equation for n= 1,2,3 with

√
T

ρs
= 365.7 m/s, we obtain

the exact value of the first three frequencies:

f1 =
1

2L
c = 91.432Hz

f2 =
2

2L
c = 182.865Hz

f3 =
3

2L
c = 274.297Hz

that must coincide, approximately, with the three values obtained from the
eigenanalysis.

m XC news m XC source in GitHub m XC doxygen doc m XC sphinx doc
B Ana Ortega B Luis Pérez Tato Page 6

http://www.xcengineering.xyz/sphinx_doc/XCmanual/solution/cpp_classes/analysis.html
http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

