d TUTORIALS

-. Ana Ortega, Luis Pérez Tato

Tutorial 3: Properties of a reinforced concrete
section obtained from a fiber-section model

This tutorial deals with a simple RC section 0.40 x 0.60 m? subjected to
an uniaxial bending M, = 300 Nm. The section is discretized in 20 x 20 cells
(concrete fibers). Two layers of reinforcing bars are defined, 6924 at the bottom
face and 4®12 at the top.

The aim is to obtain some geometrical and mechanical properties of the RC
section as well as its deformation under load.

Import modules. Firstly, we execute some import statements, so that the
code in our script gains access to the code in the imported modules.

import math

import xc_base

import geom

import xc

from solution import predefined_solutions

from model import predefined_spaces

from materials.ec2 import EC2_materials

from materials.sections.fiber_section import fiber_sets

from materials.sections.fiber_section import
plot_fiber_section

Listing 1: Imported modules.

The math module (line 15) provides access to several mathematical functions
(floor, exp, sqrt, cos, sin...).
The following three lines correspond with three main modules of XC :

e xc_base: includes the basic functions for the Python interface: assign and
retrieve properties stored in the C++ classes (see example test_evalPy.py)
and execute Python scripts (see example test_execPy.py).

e geom: handles entities related to geometry, like points, lines, polylines,
planes, polygons, circles, coordinate systems, grids, vectors, matrices, ro-
tations, translations, ...

e xc: this module provides access to the finite element classes and functions:
mesh generation, element type and material definition, analysis, ...

Import statements in lines 5-6 have to do with the following modules:

e predefined_solutions: provides access to several solution procedures
for which a set of properties have been predefined (solution algorithm,
integrator, DOF-numberer, ...).

e predefined_spaces: this module is intended to set the dimension of the
space and the number of nodal DOF, as well as to introduce constraints
to them.

Finally, the following modules are imported in lines 7 to 9:

XC news| ® XC source in GitHub, # XC doxygen doc # XC sphinx doc
= Ana Ortega| X Luis Pérez Tato Page 1

http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

TUTORIALS

EC2_materials is the module where concrete (C12-15 to C90-105) and
steel (S400 to S600) material properties are defined according to Eurocode-
2 criteria.

Module fiber_sets provides access to the classes that handle fiber-sections
of reinforced concrete.

e plot_fiber_section module is imported to plot the results obtained.

Definition of parameters. XC allows full parametric models, that’s to say,
the definition of geometry, material, loads, ..., can be based on properties that,
if your data change, the problem is recalculated accordingly.

Lines 10 to 20 set the value of the parameters which will be used later during
the model generation.

width=0.4 #width (cross—section coordinate Y)

depth=0.6 #depth (cross—section coordinate Z)

cover=0.04 #cover

A_s=2712e-6 #area of bottom reinforcement layer (6 fi 24)
A_sp=452e-6 #area of top reinforcement layer (4 fi 12)
M_y=-300e3 #bending moment [Nm]

nDivIJ= 20 #number of cells (fibers) in the IJ direction (
cross—section coordinate Y)

nDivJK= 20 #number of cells (fibers) in the JK direction (
cross—section coordinate Z)

areaFi24=math.pi*(24e-3)*%*2/4.0

areaFil2=math.pi*(12e-3) **2/4.0

1= 1le-7 # Distance between nodes

Listing 2: Parameters.

Finite element problem. The type of problem defined is StructuralMechan-
ics3D (line 24), that’s to say, nodes are defined by three coordinates (x,y,z) with
six degrees of freedom (ug, uy, u., 05, 0y, 0.). This function takes as argument
the handler of nodes, that is retrieved from preprocessor in line 23.

feProblem=xc.FEProblem ()
preprocessor=feProblem.getPreprocessor

nodes= preprocessor.getNodeHandler

modelSpace= predefined_spaces.StructuralMechanics3D (nodes)

Listing 3: Model definition.

Definition of nodes. Sentences in lines 16-17 place two nodes, almost coin-
cident at the origin of the global coordinate system, defined by its coordinates

(x,y,2)-

nodA= nodes.newNodeXYZ(1.0,0.0,0.0)
nodB= nodes.newNodeXYZ(1.0+1,0.0,0.0)

Listing 4: Nodes.

XC news| ® XC source in GitHub, # XC doxygen doc # XC sphinx doc
= Ana Ortega| X Luis Pérez Tato Page 2

http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

d TUTORIALS

Definition of material The materials C30-37 (concrete f.,=30 MPa) and
S450C (reinforcing steel f,,=450 MPa) are selected from module EC2_materials
to make up the RC section. Their respective stress-strain diagrams are called
in lines 29-30.

— Find out more about materials in XC

concrete=EC2_materials.C30
rfSteel=EC2_materials.S450C
steelDiagram= rfSteel.defDiagK (preprocessor)
concrDiagram=concrete.defDiagK (preprocessor)

Listing 5: Material definition.

Geometry of the RC section In this piece of code, the geometry of the
cross-section is defined and concrete material assigned to it.

In our case, the section is simply a rectangle, that is defined in local axis Y
(parallel to with) and Z (parallel to height) with origin in the center of the poly-
gon. The number of divisions declared (lines 36-37) corresponds to the matrix
of fibers that discretize the section, where nDivlJ and nDivJK are, respectively,
the number of elements y Y-axis and X-axis directions. The material to make
up the concrete fibers is assigned in line 35.

geomSectFibers= preprocessor.getMaterialHandler.
newSectionGeometry ("geomSectFibers")

yl= width/2.0

z1= depth/2.0

regions= geomSectFibers.getRegions

concrSect= regions.newQuadRegion(concrete.nmbDiagK)

concrSect .nDivIJ= nDivIJ

concrSect.nDivJK= nDivJK

concrSect.pMin= geom.Pos2d(-yl1,-z1)

concrSect .pMax= geom.Pos2d (+yl,+z1)

Listing 6: Section geometry.

Layers of reinforcement bars We add to the cross-section model the fibers
that match the reinforcing bars. Each rebar is modeled with one fiber that
is placed in its exact position refered to the local axis of the section. The
way it is done is by defining two layers of rebars, one bottom (6®24) and one
top (4912). Each layer take as parameters the number of bars, their diameter
and the local (y,z) center coordinates of the start and end bars that define the
straight reinforcement layer.

reinforcement= geomSectFibers.getReinflayers

reinfBottLayer= reinforcement.newStraightReinfLayer (rfSteel.
nmbDiagK)

reinfBottLayer.numReinfBars= 6

reinfBottLayer .barArea= areaFi24

yBotL=(width-2*cover-0.024) /2.0

zBotL=-depth/2.0+cover+0.024/2.0

reinfBottLayer.pl= geom.Pos2d(-yBotL,zBotL)

reinfBottLayer.p2= geom.Pos2d (yBotL,zBotL)

reinfToplayer= reinforcement.newStraightReinfLayer (rfSteel.
nmbDiagK)

XC news| ® XC source in GitHub, # XC doxygen doc # XC sphinx doc
= Ana Ortega| X Luis Pérez Tato Page 3

http://www.xcengineering.xyz/sphinx_doc/XCmanual/preprocessor/material.html
http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

d TUTORIALS

reinfTopLayer . .numReinfBars= 4
reinfTopLayer.barArea= areaFil2
yTopL=(width-2%cover -0.012) /2.0
zTopL=depth/2.0-cover-0.012/2.0
reinfTopLayer.pl= geom.Pos2d(-yTopL,zTopL)
reinfTopLayer.p2= geom.Pos2d (yTopL,zTopL)

Listing 7: Reinforcement.

Fiber-section material In lines 55 to 59 a material of type fiber-section is
created and added to the material handler. This material represents the force-
deformation relationship of the section, obtained by integration of the stress-
strain response for each of the fibers in which the section has been discretized.

materiales= preprocessor.getMaterialHandler

sctFibers= materiales.newMaterial("fiber_section_3d","
sctFibers")

fiberSectionRepr= sctFibers.getFiberSectionRepr ()

fiberSectionRepr.setGeomNamed ("geomSectFibers")

sctFibers.setupFibers ()

Listing 8: Material section.

Definition of elements. One zero-length section element is defined linking
the two nodes previously created at the same location. The nodes are conected
by the section force-deformation we have just defined (sctFibers object).

elements= preprocessor.getElementHandler

elements.defaultMaterial=’sctFibers’

elel= elements.newElement ("ZeroLengthSection",xc.ID([nodA.tag,
nodB.tag]l))

Listing 9: Elements.

Definition of constraints. Lines 63 to 65 introduce single-point boundary
constrainsts in both nodes, restraining its six degrees of freedom for the first
one and allowing displacement u, and rotations 6, and 6, in the end node.

constraints= preprocessor.getBoundaryCondHandler
modelSpace.fixNode000_000 (nodA.tag)
modelSpace.fixNodeFOO_OFF (nodB.tag)

Listing 10: Constraints.

Definition of loads. First, the handlers of loads and load patterns are suc-
cessively called (lines 66-67). Then, we specify a linear time serie as default and
create a new load pattern, giving as arguments its type and an arbitrary name.
The bending moment about global Y-axis is applied to the end node (lines 72)
by means of the vector defined in line 71, whose components represent the values
of external forces and moments [F, Fy, F,, My, M, M| expressed in the global
coordinate system.

XC news| ® XC source in GitHub, # XC doxygen doc # XC sphinx doc
= Ana Ortega| X Luis Pérez Tato Page 4

http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

TUTORIALS

loads= preprocessor.getlLoadHandler

lpatt= loads.getLoadPatterns

ts= lpatt.newTimeSeries("constant_ts","ts")
lpatt.currentTimeSeries= "ts"

1p0= lpatt.newLoadPattern("default","0")
pointLoad= xc.Vector ([0.0,0.0,0.0,0,M_y,0.0]1)
1p0.newNodalLoad (nodB.tag,pointLoad)
lpatt.addToDomain("0")

Listing 11: Loads.

Obtaining solution. The solution is obtained using the well-known Newton-
Raphson method. The shortcut to do that is to call the corresponding method
in predefined_solutions module, which pre-determine all the components
involved in the solution procedure (constraint-handler, numberer, solution algo-
rithm, convergence criterion, integrator, ...)

solution= predefined_solutions.SolutionProcedure ()
solution.convergenceTestTol= 1le-7

analysis= solution.simpleStaticModifiedNewton(feProblem)
analOk= analysis.analyze (1)
nodes.calculateNodalReactions (True,l1e-7)

Listing 12: Solution.

Review of results. First, we retrieve from the zero-length element the copy
of the material fiber-section that is specifically assigned to this element and
represents its tensional state.

The following properties are obtained (lines 83-93):

x: Neutral axis depth.
zNA: Neutral axis plane.
zCP: Compression plane.
zTP: Tension plane.

zIFA: Internal forces axis.
levArm: Lever arm.
effDepth: Effective depth.

zEffConcA: Limit of concrete effective area.

sccEll= elel.getSection()

fibersSccEll= sccEll.getFibers ()

RNA= nodA.getReaction [0]

RNB= nodB.getReaction [0]

x= sccEll.getNeutralAxisDepth ()
zNA=sccEll.getNeutralAxis () .getParamB ()
slopeBP=sccEll.getBendingPlaneTrace () .getParamA ()
zCP=sccEll.getCompressedPlaneTrace () .getParamB ()
zTP=sccEll.getTensionedPlaneTrace () .getParamB ()
zIFA=sccEll.getInternalForcesAxes () .getParamB ()

XC news| ® XC source in GitHub, # XC doxygen doc # XC sphinx doc
= Ana Ortega| X Luis Pérez Tato Page 5

http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

TUTORIALS

levArm=sccEll.getLeverArmSegment () .getLength ()

levArm2=sccEll.getMechanicLeverArm()

effDepth=sccEll.getEffectiveDepthSegment () .getLength ()

heffmax_EC2=min (2.5*(depth-effDepth) ,(depth+x)/3.,depth/2.0)

zEffConcA=sccEll.getEffectiveConcreteArealimitLine (heffmax_EC2
) .getParamB ()

Listing 13: Results.

Plot of results. We can plot these results over the section to obtain sketchs
like those shown below.

fsPlot=plot_fiber_section.fibSectFeaturesToplot (fiberSection=
sccEll)
fsPlot.colorNeutralAxis = ’r’
fsPlot.colorBendingPlane="g’
fsPlot.colorCompressionPlane="b"’
fsPlot.colorTensionPlane="m’
fsPlot.colorIntForcAxis=’c’
fsPlot.colorLeverArm=’orange’
fsPlot.colorEffDepth="purple’
fsPlot.colorEffConcrArea=’brown’
fsPlot.MaxEffHeight=heffmax_EC2
fsPlot.colorGrossEffConcrAreaContours="m’
figl,ax2d=fsPlot.generatePlot ()
figl.savefig(’figl.png’)

Listing 14: Plot.

031 034
0.2+ 0.2+
014 0.1+
—— Neutral axis
—— Bending plane
00 |~ — compression plane —| 0.0 Lever arm
B B —— Limit of effective concrete area
—— Tension plane
—— Internal forces axis
-0.14 -0.14
-0.2 -0.2
-03 -03

XC news| ® XC source in GitHub, # XC doxygen doc # XC sphinx doc
= Ana Ortega| X Luis Pérez Tato Page 6

http://xcengineering.xyz/html_files/blog_ongoing.html
https://github.com/lcpt/xc
https://codedocs.xyz/lcpt/xc/index.html
http://www.xcengineering.xyz/sphinx_doc/XCmanual/
mailto:ana.ortega@xcengineering.xyz
mailto:l.pereztato@ciccp.es

