
S O F T W A R E D E V E L O P E R ’ S Q U A R T E R L Y Issue 15• Oct 2010

The Kitware Source contains articles related to the develop-
ment of Kitware projects in addition to a myriad of software
updates, news and other content relevant to the open source
community. In this issue, Brad King, Marcus Hanwell and Bill
Hoffman discuss the DCVS tools Kitware is using to support
collaborative, distributed development teams. Sophie Chen
provides a tutorial for creating your own VolView and V3D
plugins. David Gobbi provides an overview of the recent
overhaul to VTK's wrappers. David Cole introduces a new a
feature in CDash which allows users to request project builds
done on any client. And David DeMarle, Jonathan Woodring
and James Ahrens explain the addition of adaptive stream-
ing algorithms in ParaView and VTK.

Readers will also notice a new section in this issue called the
"Community Spotlight" highlighting community members
who use Kitware tools in their own development environ-
ments. Cyrus Aidun, Daniel Reasor, Jonathan Clausen and
Jingshu Wu share their experiences using ParaView to to sim-
ulate thousands of deformable particles. And Luis Pérez Tato
discusses how his company, Iturribizia, utilizes VTK to solve
structural analysis problems. To be featured as a Community
Spotlight in the future, email editor@kitware.com.

The Source is part of a suite of products and services offered
to assist developers in getting the most out of our open source
tools. Project websites include links to free resources such
as: mailing lists, documentation, FAQs and Wikis. Kitware
supports its open source projects with textbooks, consulting
services, support contracts and training courses. For more
information, please visit our website at www.kitware.com.

Editor’s Note.. 1

Recent Releases .. 1

Distributed Version Control: The Future of History 2

Insight Toolkit Plug-ins: VolView and V3D 6

VTK Wrapper Ovehaul 2010... 9

The CDash "@Home" Cloud ... 12

Multi-Resolution Streaming in VTK and ParaView 13

Community Spotlight... 15

Kitware News ... 20

ITKv4 Development
Over the last quarter, the ITK development team released
the first two Alpha versions of ITKv4. ITKv4 is a major refac-
toring of the ITK toolkit that introduces improved wrapping
for other languages, a modular architecture and revisions to
many of ITKs components. These two releases were intended
to perform a general code clean up, dropping the tricks to
support now-defunct compilers used in the past while paving
the way for major refactoring activities to commence. The
next decade of ITK has begun.

Details
One of the most significant operational changes is that the
source code of ITK was moved to a Git repository and a new
development workflow has been put in place in order to
integrate the teams that are collaborating in this new version
of the toolkit. The major changes introduced in these two
releases are described below.

ITKv4-Alpha-01
The following compilers were deprecated: Borland 5.5, Visual
Studio 6.0 and 7.0, SGI CC, Sun CC 5.6, Metrowerks. Source
code that was intended solely to support these compilers
was also removed. The original Statistics Framework was
removed and replaced with the one that was refactored in
2007. Multi-threaded implementations of the image registra-
tion metrics, mean squares and Mattes mutual information,
replaced those which were preexisting.

Source code marked as deprecated in previous releases was
removed, classes implemented to consolidate morphology
were integrated into the toolkit and the consistent com-
putation of pixel-centered coordinates is now enforced.
Additionally, several CMake options were removed; in par-
ticular, those intended to alternate between the changes
made above and pre-existing code.

ITKv4-Alpha-02
For Alpha version 2, the source code was processed using
Uncrustify to reformat the coding style, the openjpeg library
was updated to openjpeg-v2 version from July 2010 and the
jpeg library was updated from version 6b to version 8b.

Additionally, GDCM (the library that provides DICOM support
in ITK) was updated to GDCM 2.0.16 and an ImageIO class
specialized on managing JPEG2000 files was added from an
Insight Journal paper contribution.

Details on these changes can be found in the ITK Wiki. Please
check itk.org and the Wiki for continuous updates on ITKv4.

2

Distributed Version Control:
The Future of History

Collaborative software development, an approach Kitware
and open source communities have used for many years, is
now a mainstream development model [1] [2]. Developer
teams are often distributed geographically and may even
work for different organizations. Kitware frequently teams
with its customers to develop software solutions. New tools
and processes are becoming available to manage this col-
laborative development model. Distributed Version Control
Systems (DVCS) are especially exciting. According to Joel
Spolsky [3], "This is possibly the biggest advance in software
development technology in the ten years I’ve been writing
articles here."

Over the last nine months at Kitware we have transitioned
most of our work to Git, a popular DVCS tool [10]. Although
we have not yet fully realized all of the benefits, this tech-
nology will address important issues. In particular, it will help
us further engage our customers and the open source com-
munity, and will improve our release process.

DVCS tools engage our customers and users as welcome
participants in our open source software development
model. They facilitate code reviews, allow easy incorpora-
tion of contributed modifications and shorten release cycles.
Furthermore, "social coding" sites such as GitHub [7] and
Gitorious [8] allow everyone to share their work outside the
central repositories.

We are very excited to improve our release process using
DVCS capabilities. Our new process allows all developers to
take part in release preparation by deciding what changes
are release-ready as they are developed. A release-ready
version of the software grows in parallel with the develop-
ment version. We avoid building up an inventory of partially
finished work in an otherwise releasable version. This
streamlines the release process and allows for stable and
frequent releases.

A Brief History of Version Control
Prior to 1986, two file locking version control systems which
stored the changes for a file existed: SCCS, developed at Bell
Labs, and RCS. If a developer wanted to change a file, he or
she had to issue the "edit" command on the file and, if no
other developer was working on that file, she would get a
writable version of the file to edit. After completing edits on
that file, the developer would check the changes in, and this
would release the lock.

Having a history for each file was helpful and locking the
files made sense in order to prevent two or more developers
from making the same or conflicting changes. However, in
practice this did not scale very well beyond a few develop-
ers. When a developer left a file in edit mode and went on
vacation or was away from the office, the edit locks were
forcefully and "hackishly" taken by others on the team so
that work could continue. The hand merges that would
happen after the developer returned were often painful and
time consuming.

In 1986, the Concurrent Versions System (CVS) was created to
address many of the shortcomings of previous version control
systems. CVS offered concurrent edits on files managed by
a central repository using a client/server model. Changes to

VTK 5.6.1 Released
Kitware is pleased to announce the release of VTK 5.6.1, a
patch release over 5.6.0 with a small set of improvements.

VTK now includes NetCDF 4.1.1 allowing users to take advan-
tage of the latest enhancements to NetCDF. Additionally, the
C++ version of the library is also included. A new file format,
MPAS, has been added; it is a netcdf-based reader for ocean
and atmosphere datasets.

Charts have significant improvements in axes layout and the
ability to display multiple data series (up to four) in the same
plot. Initial support for linked selection has been added to
the charts in VTK and ParaView. Support for alpha blending
in parallel coordinate plots has also been added.

We've cleaned up VTK's build and install rules so that develop-
ers don't have to worry about 'rpath' anymore. Additionally,
"make install" has been vastly improved on all platforms.

As always, we value your feedback. Please report any issues
on the VTK mailing list or the VTK bug tracker.

ParaView 3.8.1 Released
Kitware is pleased to announce the release of ParaView 3.8.1,
a patch release over 3.8.0 with a small set of improvements.

ParaView now comes HDF5 1.8.5. This enables developers
to easily create readers and plugins for ParaView that use
newer versions of HDF5. We are now including the C++ and
the high level (hl) versions of the library for those who wish
to use their newer API.

Among the improvements are two new file formats. The
first is a netcdf based reader for MPAS format ocean and
atmosphere datasets. The second, available in source form
only, is a reader plugin that allows ParaView to read multi-
resolution wavelet compressed VAPOR data format files.
Thanks to John Clyne and Dan Legreca for contributing the
VAPOR plugin.

We have improved the support for animation scripting
through Python. The new API is more coherent with the rest
of the ParaView Python API, avoiding the need for script
writers to know minute details regarding how to create
animations using proxies. Tracing capabilies for animation
were also revised.

The GPU volume ray cast mapper for voxel datasets now
works in tile display mode. In keeping with our ongoing
improvements of ParaView's charting capabilities, we have
included a few fixes regarding labels and axes placements.

ParaView build and install rules have been cleaned up so
developers no longer have to worry about 'rpath' and "make
install" has been improved on all platforms.

This release includes a material interface extraction filter
that takes a cell data volume fraction and generates a poly-
data surface. It also performs connectivity on the particles
and generates a particle index as part of the cell data of
the output. The filter computes the volume of each particle
from the volume fraction and is accessible from the Material
Analysis category in the Filters menu.

As always, we rely on your feedback to make ParaView
better. Please use http://paraview.uservoice.com/ or click on
the "Tell us what you think" link on paraview.org to leave
your feedback and vote for new features.

3

files were integrated together during an update of a check-
out prior to a commit to the repository by the last person to
commit his/her changes on that file. This encouraged prema-
ture commits that often forced unfinished changes on the
whole team. However, the model was certainly much better
than the file-locking days of SCCS and RCS.

When CVS first came out it was a hard sell to the develop-
ment community. Developers felt secure with systems based
on file locks. The idea that two people could work on one
file at the same time and that changes would be integrated
automatically was "just plain crazy". However, over time
CVS became the accepted norm for software development.
In 2000, the Subversion project (SVN) was created to replace
CVS. SVN provided atomic whole-tree commits, versioned
file properties and a more solid implementation of CVS’s
centralized repository model.

A new model for version control, Distributed Version Control
Systems (DVCS), is now unseating centralized systems as the
standard for software development. These systems offer
concurrent repositories, network-free access to local-disk
repositories (Figure 1) and they enable new collaboration
models with non-linear history and multiple shared reposi-
tories (Figures 2 and 5). In this article we describe the power
of DVCS as a version control system and explain how we are
using it to improve our collaborative development model.

Figure 1 – Access Information at All Times

Notation & Terminology
This article uses conventions and terminology from Git, but
the discussion applies to DVCS in general. Our figures denote
history using a directed acyclic graph as shown in Figure 2.
Nodes (circles) represent versions and directed edges point
at prior versions. The subgraph reachable from any given
version represents its history.

Figure 2 – Visualizing History

Collaboration Tasks
We divide collaborative development into three basic version
control tasks:

•	 Create: Record a new version with meta-data describing
the changes;

•	 Share: Publish new versions for other developers to see;
•	 Integrate: Combine changes from multiple versions into

another new version.

The following reviews each task in more detail.

Create
Figure 3 shows the basic workflow we each follow to create
new versions. First, we checkout a version from the reposi-
tory on which to base changes. Then, we edit the content in
our work tree to produce a new version. Finally, we commit
the new version to the repository. All version control systems
provide this basic workflow by definition.

Figure 3 – Basic Workflow

Share
We share versions through repositories. Figure 4 shows the
traditional model in which each developer has only a work
tree. The checkout and commit operations share all versions
through a single repository.

Figure 4 – Single Centralized Repository

Figure 5 shows the distributed model in which each devel-
oper has a private repository and work tree. The checkout
and commit operations occur locally. Sharing occurs arbi-
trarily among repositories through separate operations such
as push, fetch, and pull.

4

and how releases are prepared and maintained. Traditional
version control systems severely limit possible workflows by
inseparably combining all three version control tasks under
the commit operation in a single repository. Distributed
version control systems provide separate operations for the
three tasks and thus support many workflows [4].

Rebase v. Merge Workflows
No matter who creates changes or where they are shared,
they eventually need to be integrated together. At this point
workflows are distinguished by their approach to integration,
either rebase or merge. Figure 7 illustrates both approaches
with a series of commits belonging to three topics: feature
a, feature b, and a bug fix. It also includes the creation and
maintenance of a release branch.

Figure 7 – Collaboration Workflow by Rebase or Merge

In the rebase workflow, each commit is rebased on top of
whatever happens to be the latest version at the time it is
published; there is no record of the original base on which it
was developed. The commits from all topics are intermixed
with one another in history. The history of the release branch
has no indication that its second commit is a copy of the bug
fix changes.

In the merge workflow, each commit is preserved on its
original base. The commits belonging to each topic appear
contiguously in history. There is an explicit merge commit
recording the integration of each topic. The second commit
on the release branch explicitly merges the bug fix topic.

Traditional version control systems automatically rebase
every commit, and therefore support only the rebase work-
flow. Distributed version control systems support both rebase
and merge workflows.

A "Branchy" Workflow
In the past, when using a central repository with a single
development branch, the authors have seen work come to
a halt when some bad code was committed. No other work
could continue until the issue was fixed. With the use of DVCS
developers can start new work from a stable working code
base and no longer base new work on a moving target.

Figure 5 – Concurrent Distributed Repositories

Integrate
Figure 6 shows a case in which work has diverged because
two developers independently created versions C and D
based on version B. Assume version D has been published and
we must integrate its changes with those made in version C
to produce a new version.

Figure 6 – Integrate by Rebase or Merge

The figure illustrates two approaches. One wherein we iden-
tify the changes made by C, originally based on B, and rebase
them on D to create a new version C’. And another where
we merge versions C and D together into a new version, M,
that combines their changes.

Both approaches integrate the same changes into a single
new version, either C’ or M, but record different history
behind said version.

In traditional version control systems the commit operation
automatically rebases changes in new versions on the latest
version in the repository. If the rebase fails it asks the user
to update the work tree and integrate the changes before
committing. In distributed version control systems, rebase
and merge are explicit operations separate from commit.

Collaboration Workflows
All developer communities establish a workflow involving
these three version control tasks in order to collaboratively
develop and maintain their projects. A workflow determines
when new features are introduced, how bugs are fixed

5

The use of merge commits to integrate work provides
greater flexibility and motivates the use of a "branchy"
workflow with DVCS tools [5]. This workflow defines two
types of branches: topic and integration. Topic branches
contain a contiguous sequence of commits developing a spe-
cific feature or bug fix. Integration branches contain merge
commits to integrate topic branches together.

In the bottom of Figure 7 each of feature a, feature b, and
bug fix is a topic branch, and master and release are integra-
tion branches. Integration branch heads are published in a
designated official repository. Topic branch heads are not
named explicitly in the official repository, but appear in the
history of integration branches that merge them.

Each integration branch has a specific purpose such as
maintenance of a current release (typically called maint or
release), preparation of a future release (typically called
master) or bleeding-edge development (typically called
next, as in the next topics to evaluate). Each topic branch
starts from the most stable integration branch to which it
will be merged. Typically this is master for new features and
release for bug fixes.

Figure 8 – Multiple Integration Branches

Figure 8 shows the use of two integration branches, master
and next, while developing a topic branch, my-topic. The
head of master is commit (0) when the topic starts. Commits
(1) and (2) develop the topic. Merge commit (3) integrates
the topic into next which is then published for evaluation
and testing by others. Later, when the topic is deemed
stable, merge commit (4) integrates the topic into master
for publication.

Throughout this workflow the master branch remains stable
because topics are merged into it only after they have been
evaluated on next. Since new topics are started from master
they have a stable base version on which to work regardless
of whether unstable topics have been merged to next. A
new stable topic may be merged back to master at any time
independent of other (unstable) topics.

Managing Releases
Release management has two parts: preparing a new release
and maintaining an existing release. In the past, Kitware
placed responsibility for both parts on a release manager.
We prepared new releases using a "freeze" period during
which the release manager had exclusive commit access to
stabilize the trunk, often by cleaning up unfinished work,
before creating the release. The release manager then main-
tained the release branch by manually copying bug fixes from
the development trunk. With this approach, development
stalled during freeze periods and maintenance of releases

became increasingly burdensome on the release manager as
the trunk diverged over time.

Kitware's new release process is based on the DVCS branchy
workflow in Figure 8. New topics are merged to next for
evaluation and testing and only stable topics are merged into
master, keeping it release-ready at all times. This approach
amortizes the cost of release preparation over the develop-
ment cycle, distributes the workload to all developers and
separates release scheduling from feature development.

We now manage releases as shown in Figure 9 (for simplicity
we omit next from the figure but we use it to test changes
before merging to master).

Figure 9 – Release Maintenance

The release manager tags a new release directly on master
(0) and development proceeds normally. A developer starts a
bug-fix topic (1) from the released version and merges it into
master (2), making the "release+fix" version (1) available
without any action by the release manager. Then the release
manager merges the fix into the release branch (3), tags a
patch release, and merges release into master (4), making
the tag reachable. The process repeats with another bug-fix
(5 and 6), merge to master (7), merge to release (8), tag and
merge of release into master (9).

This maintenance approach relieves the release manager of
all tasks except trivial merge and tag operations. Release tags
are always reachable from master so there is no need for a
separate named branch for every new release. DVCS allows
developers to commit bug fixes directly on the releases that
need them.

Conclusion
Some DVCS concepts may seem overly complex and irrel-
evant to many developers, but are invaluable to others. Not
only are they here to stay, but they'll improve productivity
and reduce waste in the software development process. As
with the advent of centralized concurrent version systems, a
period of education and exploration is required to fully take
advantage of this new technology.

Kitware has standardized on Git, our DVCS of choice.
Although powerful, some consider Git to be complicated
to learn. It was even introduced at the now-famous Google
Tech Talk by Linus Torvalds as "expressly designed to make
you feel less intelligent than you thought you were" [9]. We
encourage the reader to stay the course and hang in there as
the benefits really are numerous.

Kitware is not alone in embracing DVCS. There are many
other software companies exploring the features of DVCS.
For example, we are investigating use of Gerrit, a code review
tool developed by Google engineers to facilitate Android
development [6]. It provides tight integration with Git and
a web interface for performing online code reviews. The

6

Insight Toolkit Plug-ins:
Volview and V3D

VolView and V3D are applications for visualization and
analysis of three-dimensional images. They both have tools
which allow users to filter and analyze image data. The two
applications serve two different niches: VolView was created
with radiologists in mind, while V3D caters primarily to
microscopists. However, a powerful part of both biomedi-
cal imaging tools is support for user defined extensions via
custom plug-ins. This support allows users to extend how
input data is filtered. This quick guide will help you get
started with your own VolView and/or V3D plug-in.

Software applications such as Slicer, SNAP, Analyze, VolView,
SCIRun, GoFigure and V3D use ITK filters as plug-ins to add
desirable additional capability to their image analysis appli-
cation of choice, thus removing the need to rewrite existing
algorithms for each new piece of software while stamping
out the hassles of requesting usage-permission.

ITK’s qualifications for use in scientific research makes it
important for developers to make the most of ITK’s imaging
tools and offer tailored combinations to those who desire
them. The following table compares some of the main fea-
tures of VolView [1] and V3D [2].

Creator

VolView

Kitware, Inc.

Windows XP, Vista
Mac
Linux

3D image analysis for
medical, scientific and
engineering research
communities. Interactively
render, reformat, annotate,
measure, animate and
capture/print volumetric
and image data.

http://www.kitware.com/
products/volviewdownload.
html

V3D

Howard Hughes Medical
Institute: Janelia Farm Research
Campus, Hanchuan Peng, et al.

Windows XP, Vista
Mac
Linux

3D image analysis such as cell
segmentation, neuron tracing,
brain registration, annotation,
quantitative measurement, data
management and more.

http://penglab.janelia.org/proj/
v3d

Platforms

Intent

Download

Structure of Plug-ins
Typically, a plug-in for V3D and VolView consists of source
code compiled and packaged as a shared library. The plug-in
name determines the name of the shared library used for
deployment as well as the name of the plug-in initialization
function. The shared library is copied into a specific directory
of the VolView or V3D binary installation. No libraries from
VolView or V3D are required in the process. Plug-in devel-
opers only need a set of source code headers defining the
plug-in API offered by the application. This is essentially the
set of data structures and function calls by which the plug-in
communicates with the application.

A V3D PLUG-IN
The development of ITK plug-ins for V3D serves two pur-
poses: 1) exposing ITK functionalities to researches who
analyze microscopy data and 2) uncovering the areas in
which ITK requires improvements in order to better serve
the microscopy community. ITK filter plug-ins were added to
V3D via a collaborative effort between Kitware and Janelia
Farm (HHMI).

ITK project is using it experimentally, and several develop-
ers are evaluating it internally. Gerrit can combine a human
element with automated testing and multiple integration
branches to provide us with a very effective workflow to
collaboratively develop complex software with contributors
from around the world.

Other online tools such as Gitorious and GitHub are already
being used by developers outside Kitware to develop bug
fixes and new features for Kitware-hosted projects like VTK,
ParaView, ITK and CMake.

We hope to have armed you with some basic concepts and
terminology associated with DVCS, while presenting some
of the exciting new workflows that DVCS makes possible.
Kitware is very excited about this technology and is looking
forward to reaping the full benefits.

To our customers and co-developers: we look forward to
releasing our work frequently and incorporating your con-
tributions quickly and reliably.

REFERENCES
[1]		 http://en.wikipedia.org/wiki/Collaborative_software_devel-

opment_model
[2]		 http://www-01.ibm.com/software/info/features/collabora-

tion/main.html
[3]		 "Distributed Version Control is here to stay, baby", Joel on

Software, March 17, 2010
		 http://joelonsoftware.com/items/2010/03/17.html
[4] 		 "Distributed Workflows", Pro Git, ch. 5, http://progit.org/

book/ch5-1.html
[5]		 "Git help workflows",
		 http://www.kernel.org/pub/software/scm/git/docs/gitwork-

flows.html
[6] 		 "Gerrit Code Review", http://code.google.com/p/gerrit/
[7] 		 "GitHub – Social Coding", http://github.com/
[8] 		 "About Gitorious", http://gitorious.org/about
[9] 		 "Linus Torvalds on git", Google Tech Talk, May 3, 2007,
		 https://git.wiki.kernel.org/index.
		 php/LinusTalk200705Transcript
[10]	 "Git – the fast version control system", http://git-scm.com/

Marcus Hanwell is an R&D engineer in the
scientific visualization team at Kitware, Inc.
He joined the company in October 2009, and
has a background in open source, Physics
and Chemistry. He spends most of his time
working with Sandia on VTK, Titan and
ParaView.

Bill Hoffman is currently Vice President and
CTO for Kitware, Inc. He is a founder of
Kitware, a lead architect of the CMake cross-
platform build system and is involved in the
development of the Kitware Quality
Software Process and CDash, the software
testing server.

Brad King is a technical developer in Kitware’s
Clifton Park, NY office. He led Kitware's
transition to distributed version control,
converted many of our project histories to
Git, and conducted training sessions.

7

The simplest way to implement a plug-in is to copy and paste
an existing V3D plug-in and modify two methods. More
advanced plug-ins, typically those requiring more than one
filter, may need to be modified further. For our V3D plug-in
example, we will use the existing itkSigmoidImageFilter,
which can be found under the Intensity Transformation
directory to create another plug-in, itkLogImageFilter. For
V3D, the V3DPluginCallback is used to get data structures
and callbacks.

Create a V3D Plug-in
Copy and paste existing plug-in header and source files
to the binary directory where plug-ins are set up in your
system. An example path is: src/ITK-V3D-Plugins/Source/
IntensityTransformations. Change the file names to corre-
spond to the goal image filter.

Then find instances in files where filter references and names
ought to be replaced. In the SetupParameters section, adjust
your filter’s parameters, or if the section does not exist, refer
to the SetUpParameters() below. If you're uncertain about
a default value use your best judgment or communicate
with an appropriate end-user for a general value. The value
chosen should reflect some noticeable changes in an image
upon testing.

 void Execute
 (const QString &menu_name, Qwidget 50 *parent)
 {
 this->Compute();
 }

 virtual void ComputeOneRegion()
 {

 this->m_Filter->SetInput
 (this->GetInput3DImage());

 if(!this->ShouldGenerateNewWindow())
 {
	 }

 this->m_Filter->Update();
 }

 virtual void SetupParameters()
 {
 //
 	 // These values should actually be provided by
	 // the Qt Dialog...
 	 // just search the respective .h file for the
 	 // itkSetMacro for parameters
 this->m_Filter->SetFullyConnected(true);

 this->m_Filter->SetBackgroundValue(0);
 this->m_Filter->SetForegroundValue(100);
 this->m_Filter->SetNumberOfObjects(3);
 this->m_Filter->SetReverseOrdering(false);
 this->m_Filter->SetAttribute(0);
 }

A VOLVIEW PLUG-IN
For this example, a plug-in named vvITKGradientMagnitude
will be deployed in a shared library: libvvITKGradientMag-
nitude.so in Unix/OsX and vITKGradientMagnitude.dll on
MS Windows. The initialization function is vvITKGradi-
entMagnitudeInit(). The result of the example will be an
implementation of a simple ITK based filter with only one
GUI parameter. The example may be adapted to most other
toolkits or C/C++ implementation.

Given the similar structure of V3D, the directions in this
VolView example should be generic enough to be applied to
a V3D plug-in with the respective style/naming differences.

Communication between the plug-in and the application is
facilitated by a public header file that defines the data and
GUI structures. The plug-in developer simply implements the
methods that are defined within the header file.

Initialization function
A plug-in’s initialization function must conform to a particu-
lar API. For our particular example, this would be:

extern "C"
{
 void VV_PLUGIN_EXPORT vvITKGradientMagnitudeInit(
 vtkVVPluginInfo *info)
 {
 }
}

where the symbol VV_PLUGIN_EXPORT and the structure
vtkVVPluginInfo are defined in the public header file,
vtkVVPluginAPI.h. This initialization function will be invoked
by VolView at start-up -- after the shared library has been
dynamically loaded.

Content
Below is the typical content of the public header file,
vtkVVPluginAPI.h.

Call macro vvPluginVersionCheck() to verify the plug-in/API
conforms to current version of VolView's binary distribution.
A plug-in cannot be executed if the versions do not match,
and VolView displays an error message at run-time to indi-
cate this when necessary.

vvPluginVersionCheck();

Information Structure is initialized. Setup Information does
not change.

// Setup Information

ProcessData is set to the pointer of the function that will
perform the computation on the input data. This allows
for freedom in the implementation of the function. This is
further covered in the next section.

info->ProcessData = ProcessData;

8

completing the plug-in processing and for determining if the
undo information can be kept. Note that this estimate is not
based on the size of the final dataset produced as output,
but on the total amount of memory required for intermedi-
ate processing. In other words, it should provide the peak of
memory consumption during the plug-in execution.

The ProcessData() Function
The ProcessData() function performs the filter computation
on the data. The function signature of ProcessData() is:

static int ProcessData(void *inf,
 vtkVVProcessDataStruct *pds)

where the first argument is a pointer to a vtkVVPluginInfo
structure which can be downcast to a vtkVVPluginInfo
pointer using:

vtkVVPluginInfo *info = (vtkVVPluginInfo *) inf;

In this assignment, the right hand side is a structure, vtkVVPro-
cessDataStruct, that carries information on the data set to
be processed. This information includes: the actual buffer of
voxel data, the number of voxels along each dimension in
space, the voxel spacing and the voxel type.

The vtkVVProcessDataStruct also contains the members
inData and outData, which are pointers to input and output
data sets, respectively. ProcessData() extracts the data from
the inData pointer, processes it, and stores the final results in
the outData buffer.

ProcessData() Starting Code
The typical ProcessData() starting code of this function
extracts meta information about the data set from the
vtkVVProcessDataStruct and vtkVVPluginInfo structures.
For example, the following code shows how to extract the
dimensions and spacing of the data.

First, set up a data structure.

SizeType size;
IndexType start;
double origin[3];
double spacing[3];

size[0] = info->InputVolumeDimensions[0];
size[1] = info->InputVolumeDimensions[1];
size[2] = pds->NumberOfSlicesToProcess;

for(unsigned int i=0; i<3; i++)
 {
 origin[i] = info->InputVolumeOrigin[i];
 spacing[i] = info->InputVolumeSpacing[i];
 start[i] = 0;
 }

Image data can be imported into an ITK image using the
itkImportImageFilter.

RegionType region;
region.SetIndex(start);
region.SetSize(size);
m_ImportFilter->SetSpacing(spacing);
m_ImportFilter->SetOrigin(origin);
m_ImportFilter->SetRegion(region);
m_ImportFilter->SetImportPointer(pds->inData,
 totalNumberOfPixels, false);

The output of the import filter is then connected as the
input of the ITK data pipeline and the pipeline execution is
triggered by calling Update() on the last filter.

Similarly, UpdateGUI is also set to a function pointer.

info->UpdateGUI = UpdateGUI;

SetProperty() is used to define general properties of the
plug-in – some of these properties are simply informative
text that is displayed on the GUI (i.e. textual name of the
plug-in, terse and extended documentation). Properties are
identified by tags to further enforce the decoupling between
the internal representation of information in VolView and
the structure of code in the plug-in. Other non-GUI proper-
ties are also set with this method.

//Setup Information - SetProperty()

The tag VVP_NAME specifies that the string being passed as
third argument of the SetProperty() method should be used
for the text label of the plug-in in the GUI. VVP_GROUP
specifies the grouping of the filter within the plug-in menu,
and VVP_TERSE_DOCUMENTATION provides a short descrip-
tion of the plug-in.

info->SetProperty(info, VVP_NAME, "Gradient
Magnitude IIR (ITK)");

info->SetProperty(info, VVP_GROUP, "Utility");

info->SetProperty(info, VVP_TERSE_DOCUMENTATION,
 "Gradient Magnitude Gaussian
 IIR");

The tag VVP_FULL_DOCUMENTATION specifies the complete
description string.

info->SetProperty(info, VVP_FULL_DOCUMENTATION,
"This filter applies IIR filters to compute the
equivalent of convolving the input image with the
erivatives of a Gaussian kernel and then computing
the magnitude of the resulting gradient.");

Other tags are used to specify:

Whether this filter is can perform in-place processing;

info->SetProperty(info,
 VVP_SUPPORTS_IN_PLACE_PROCESSING, "0");

Whether this filter supports data streaming (processing in
chunks);

info->SetProperty(info,
 VVP_SUPPORTS_PROCESSING_PIECES, "0");

And other information about the filter implementation.

info->SetProperty(info, VVP_NUMBER_OF_GUI_ITEMS,
 "1");

info->SetProperty(info, VVP_REQUIRED_Z_OVERLAP,
 "0");

Memory consumption is an important consideration for pro-
cessing. By providing an estimated number of bytes to be
used per voxel of the input dataset:

info-> SetProperty(info,
 VVP_PER_VOXEL_MEMORY_REQUIRED, "8");

Memory consumption can be estimated. VolView will use
this factor to ensure that the system has enough memory for

9

m_FilterA->SetInput(m_ImportFilter->GetOutput());
m_FilterB->SetInput(m_FilterA->GetOutput());
m_FilterC->SetInput(m_FilterB->GetOutput());
m_FilterD->SetInput(m_FilterC->GetOutput());
m_FilterD->Update();

Finally the output data can be copied into the pointer pro-
vided by VolView. This is typically done using an ITK image
iterator that will visit all the voxels.

outputImage = m_Filter->GetOutput();
typedef itk::ImageRegionConstIterator
< OutputImageType > OutputIteratorType;
OutputIteratorType ot(outputImage,
 outputImage->GetBufferedRegion());
OutputPixelType * outData =
 static_cast< OutputPixelType * >(pds->outData);
ot.GoToBegin();
while(!ot.IsAtEnd())
 {
 *outData = ot.Get();
 ++ot;
 ++outData;
 }

When memory consumption is critical, it is more convenient
to actually connect the output memory buffer provided by
VolView to the output image of the last filter in the ITK
pipeline. This can be done by invoking the following lines of
code before executing the pipeline.

m_FilterD->GetOutput()->SetRegions(region);
m_FilterD->GetOutput()->GetPixelContainer()
->SetImportPointer(
 static_cast< OutputPixelType * >(pds->outData),
 totalNumberOfPixels, false);
m_Filter->GetOutput()->Allocate();

The current distribution of ITK provides support for not
rewriting this same code for each new plug-in. A templated
class containing this code is available in the current distribu-
tion of ITK in the InsightApplications module. New plug-ins
only need to define their own ITK pipelines and invoke the
methods of the base class in the appropriate order.

Refreshing the GUI
After the source code has been packaged into a shared
library, it should be deposited into the plug-ins directory:
VolView 3.2/bin/Plugins. In order for the plug-in to load,
the GUI needs to be refreshed by re-scanning all plug-ins. A
circular arrow next to the filters selection menu will refresh
the filters list.

Image processing algorithms can take considerable time to
execute on 3D data sets. It is important to provide user feed-
back as to how the processing is progressing and to allow
the user to cancel an operation if the total execution time
is excessively long. Calling the UpdateProgress() function of
the vtkVVPluginInfo structure from within the ProcessData()
function accomplishes this:

float progress = 0.5; // 50% progress
info->UpdateProgress(info, progress,
 "half data set processed");

This function provides feedback to the VolView GUI allow-
ing VolView to update the progress bar and set the status
bar message. The frequency with which the UpdateFunction
should be called should be well balanced. If it is invoked
too often, it will negatively impact the performance of the
plug-in -- a considerable amount of time will be spent in GUI

refreshing. If it is not called often enough, it may produce
the impression that the processing is failing and that the
application is no longer responding to user commands.

A detailed skeleton plug-in and a more contextual version of
this guide can be found starting on page 45 in the VolView
Users Manual, available at kitware.com/volview.

REFERENCES
[1] Download VolView from: kitware.com/volview
[2] Download V3D from: http://penglab.janelia.org/proj/v3d

Sophie Chen recently completed her second
summer as a Kitware intern where she
worked under Luis Ibáñez, Wes Turner and
Harvey Cline on programming algorithms,
ITK and VTK. Sophie is a senior at RPI where
she is working toward an IT degree in
Managing Information Systems.

VTK WRAPPER OVERHAUL 2010

The VTK wrappers received their last major overhaul in
1998 and have done well to serve the VTK community. In
recent years, however, the wrappers have started to show
some cracks, particularly as new types such as vtkVariant
and vtkUnicodeString have been introduced to VTK but
have not been made available in the wrappers. One reason
for the wrappers’ slow development compared to the rest
of VTK is undoubtedly the “intimidation factor” of the
wrapper-generator code, which is very complex and lacking
in documentation.

VTK wrappers were recently overhauled again. The four
main goals of overhaul project were as follows:

•	 Cleaning up the wrapper-generator code by removing
hard-coded hexadecimal constants, reducing the use of
global variables, and improving code documentation;

•	 Proper wrapping of vtkStdString, which is a crucial inter-
face type that is only partly wrapped;

•	 Wrapping vtkVariant and other new VTK types in Python;
•	 And eliminating the need for BTX/ETX “unwrappable

section” markers in the code.

The overarching goal is to provide a new foundation for
the wrapper-generators that will make it easier to move
the wrappers forward.These changes have been made while
maintaining backwards compatibility with existing Tcl,
Python, and Java programs which use VTK. The old wrapper-
generator code has not been replaced; it has only been
cleaned up and enhanced.

WRAPPER PRIMER
To provide some background, the wrapper-generator code
consists of a “front-end” parser that reads the VTK header
files and stores the class declarations in simple data struc-
tures, and three “back-ends” that read those data structures
and generate the wrapper code for each of the wrapper
languages. Most of this project has focused on the front end,
but enhancements have been added to the back end as well,
particularly the Python back end.

The parser front-end can be further subdivided into a “lex”
tokenizer (which also does rudimentary preprocessing) and

10

The new parser also features a preprocessor, something that
was conspicuously absent before. The preprocessor stores
defined macros and provides conditional parsing based on
#if directives, eliminating yet another previous use of the
BTX/ETX markers. Unlike a traditional preprocessor, the
parser stores macros but does not expand them. This is by
design, since several VTK macros have special meaning to the
wrappers that would be lost if those macros were expanded.
The parser can query the macros to get their value.

HIERARCHIES FOR ALL
A fundamental addition for the new wrappers is a collection
of “hierarchy” files, one per source directory, that list the full
genealogy of all the VTK classes in each directory. The file
vtkCommonHierarchy.txt, for example, lists all classes defined
in the Common directory. The file structure is simple:

vtkArray : vtkObject ; vtkArray.h ; ABSTRACT
vtkArraySort ; vtkArraySort.h ; WRAP_EXCLUDE

The name of the class comes first, followed by any super-
classes, then the header file, and finally any of the CMake
flags WRAP_EXCLUDE, WRAP_SPECIAL or ABSTRACT which
apply to the class. Classes that have a name that is different
from the name of their header file are automatically labelled
with VTK_WRAP_EXCLUDE. Note that the file format might
change in the future, so anyone who is interested in using
this file should always use the functions defined in VTK/
Wrapping/vtkParseHierarchy.h to read the file, instead of
writing their own code to do so.

In addition to classes, the hierarchy files also include all
typedefs and enum types encountered in the header files,
in order to provide a comprehensive list of all types defined
in VTK. The rationale behind the hierarchy files is as follows:
previously, the wrappers would assume that any type with
a “vtk” prefix was derived from vtkObjectBase, excepting
types like vtkIdType that were specifically caught by the
parser. This is the other reason that BTX/ETX had to be used
so often (in addition to the aforementioned limitations of
the parser), since methods that used new types like vtkVari-
ant or vtkUnicodeString had to be BTX'd because these types
were misidentified by the wrappers. By using the hierarchy
files, the wrappers can identify any type defined in VTK.

WRAPPER COMMAND LINE ARGUMENTS
The command line for the wrapper-generators has been
modified, and this will make it easier to invoke the wrappers
by hand. The old calling convention still works, in order to
support older CMake scripts. The new command line is as
follows:

vtkWrapPython [options] input_file output_file

 --concrete	 tell wrappers that class is concrete
 --abstract	 tell wrappers that class is abstract
 --vtkobject	 class is derived from vtkObjectBase
 --special	 class not derived from vtkObjectBase
 --hints <file> specify a hints file
 --types <file> specify a hierarchy file
 -I <dir>		 add an include directory
 -D <macro>	 define a preprocessor macro

All of these arguments are optional. For instance, the
wrapper-generators will automatically guess that any class
with pure virtual methods is an abstract class. However, the
–concrete option is needed in cases where an abstract class
is being wrapped that will be replaced by a concrete factory-
generated class at run time.

a “yacc” parser that understands the C++ grammar. These
two pieces are the foundation of the wrappers, or less gen-
erously, they are the bottleneck. The wrappers are only able
to wrap the class and method definitions the parser can pull
from the header files. Because of the parser's importance,
it has received more attention during this update than any
other part of the wrappers.

An important feature of the VTK wrappers is that they wrap
the VTK classes one class at a time using only the header file
for that class, with a minimal amount of hinting. When com-
bined with CMake, this approach is easily scalable to a very
large number of classes in different directories or even in
different packages. The new wrappers further enhance this
approach by automatically generating “hierarchy” files that
describe all types defined in any particular VTK source direc-
tory. These files are discussed in detail later in this article.

A SHINY NEW PARSER
The new parser is a significant improvement to the old
parser code. The original code took a minimalist approach to
parsing the VTK header files. It looked for the first VTK class
defined in the header, and then extracted only the methods
defined in that class. The rest of the file would be ignored,
but since the parser lacked a full C++ grammar, it was not
always successful in skipping over parts it was supposed to
ignore. These troublesome patches of code had to be sur-
rounded by BTX/ETX exclusion markers so that they could be
removed at the preprocessing stage.

The new parser code reverses this minimalist approach: it
reads all the declarations in the header file and stores them
all for use in the wrappers. This means that typedefs, tem-
plates, constant definitions, enum types, operator overloads
and namespaces are all available to the wrapper-generators.
Each piece of information from the header file is stored in a
C struct, with the most-used struct being the ValueInfo struct
that is used for method arguments, variables, constants and
typedefs. The following is from the vtkParse.h header file:

struct ValueInfo
{
 parse_item_t ItemType; /* var, typedef, etc */
 parse_access_t Access; /* public, private, etc. */
 const char *Name;
 const char *Comment;
 const char *Value; /* value or default val */
 unsigned int Type; /* see vtkParseType.h */
 const char	 *Class; /* type as a string */
 int Count; /* for arrays */
 int NumberOfDimensions;
 const char	 **Dimensions;
 FunctionInfo	 *Function; /* for function ptrs */
 int IsStatic; /* class variables only */
 int IsEnum; /* for constants only */
};

One should note that in contrast to the old parser, arrays
can now be multi-dimensional. The dimensions are stored as
strings, in case the dimensions are symbolic values (e.g., tem-
plate parameters) that cannot be evaluated until compile
time. The product of the dimensions is stored as an “int” if
all the dimensions are integer literals.

Similar structs provide information for functions, classes,
namespaces, templates, etcetera. The FunctionInfo and
ClassInfo structs have backward compatibility sections that
provide their info in the old wrapper format, so that wrap-
pers-generators based on the old structs can easily be made
to work with the new parser.

11

The “--hints” option provides a way of specifying the hints
file that has been used by the wrappers since day one. The
hints file is the only part of the wrappers that still uses
hexadecimal literals to describe types. Support for it will be
maintained indefinitely to ensure backwards compatibility.
The new “--types” option gives the wrappers access to the
new hierarchy files that were described above.

The “-I” and “-D” options are forwarded to the preprocessor,
so that if the file being wrapped includes important header
files like vtkConfigure.h, the preprocessor can read those
files and use the macro values defined within them.

STRINGS AND UNICODE
The vtkStdString type was introduced several years ago,
and when it was added to the wrappers, it was wrapped by
identifying it as “const char *” in the parser, with its c_str()
method used to do the conversion. This caused problems,
because most VTK methods return vtkStdString by value,
resulting in the creation of a temporary string object on the
stack, for which the char pointer returned by c_str() is like-
wise only temporarily valid. Because of this, only methods
that returned vtkStdString by reference could safely be
wrapped, and methods that passed vtkStdString by value
were blocked with BTX/ETX. One of the reasons that vtk-
StdString was wrapped this way is that the old parser had
only 15 slots available to identify fundamental VTK types,
compared to nearly 255 slots for the new parser.

The new Tcl, Python and Java wrappers have all been
modified so that they correctly identify vtkStdString as a
std::string subclass and wrap it appropriately, allowing the
BTX/ETX markers to be removed from methods that pass vtk-
StdString by value. The vtkUnicodeString type has also been
added to the parser as a new type, and the Python wrappers
have been modified to transparently convert between vtkU-
nicodeString and Python's own unicode type.

WRAPPING VARIANTS IN PYTHON
There are two approaches that could have been used to
wrap vtkVariant. The first approach would have been to
have the Python wrappers implicitly convert Python types to
and from vtkVariant, so that if a C++ VTK method returned
a variant, the wrapped Python method would automatically
extract and return the value stored in the variant. This would
have been convenient, but also would have resulted in loss
of information. For example, any integer type between
“unsigned char” and “long” would automatically be con-
verted into a Python integer, and Python users would not
be able to discover the original C++ type. For this reason, an
approach in which vtkVariant is wrapped as its own distinct
Python type was used instead.

The technique used to wrap vtkVariant is similar to the
technique used to wrap vtkObjectBase-derived objects.
The main differences are the way memory management
is done and the way that constructors are handled. Unlike
vtkObjects, the vtkVariant is not reference-counted, so if a
variant is passed as a method argument, it is copied just as
if it was an int or any other basic type. Wrapping the many
constructors for vtkVariant was a challenge, because the old
Python wrapper code for resolving overloaded methods was
inadequate for this task: it would simply try each overload
in turn until one of the overloads could be called without
generating an argument type error. Hence, calling vtkVari-
ant(10) from Python would create an “unsigned char”
variant since vtkVariant(unsigned char) is the first construc-

tor in the header file. For this wrapper update project, code
was added to the Python wrappers so that they compare all
passed arguments against those of the various method sig-
natures, and call the overload that provides the best match.
This new code is used for all Python method calls, not just for
constructors, so there might be some small backwards com-
patibility problems since the old code always called the first
matched method, while the new code calls the best match.

Another feature that was added to the Python wrappers is
automatic argument conversion via constructors. In C++, if
a method requires a vtkVariant argument, but is passed as
an “int”, the vtkVariant(int) constructor will automatically
be called to convert the “int”. No such automatic conver-
sion exists in Python; it is instead the responsibility of the
method writer to have it explicitly convert the arguments.
Fortunately, since all the VTK/Python methods are gener-
ated by the wrapper-generator code it only required some
creative programming to have the Python wrappers auto-
matically look through the constructors of all wrapped types
and do conversions as necessary.

BEYOND VARIANTS
The new wrappers handle the Python-wrapping of vtkVari-
ant automatically, and a few other special VTK types are
similarly wrapped. These types are wrapped by marking
them with VTK_WRAP_SPECIAL in the CMakeLists.txt file,
and they must also have a public copy constructor and an
“=” operator. Other special types that have been wrapped
include the vtkArray helper types: vtkArrayCoordinates,
vtkArrayExtents, vtkArrayRange, and vtkArrayWeights.

Even though the parser now recognizes all operator methods,
at this point in time the Python wrappers only wrap the com-
parison operators “<” “<=” “==” “!=” “>=” “>”, and the
stream output operator “<<” via Python's “print” statement.
Some types will need additional operator methods to be
wrapped in order to make them truly useful from Python.

CONCLUSION
The overhauled parser and the hierarchy files provide a solid
new foundation for VTK wrapper development, but work
still needs to be done to update the back-end wrapper
generators for Tcl, Python and Java. The Python wrappers
now support vtkUnicodeString and several other special VTK
types, and the code has been reorganized and documented,
but entities like multi-dimensional arrays and templated
classes that are parsed by the new parser are not yet wrapped
in any language. All of these can hopefully be added to the
wrappers in the coming years.

ACKNOWLEDGEMENTS
I would like to acknowledge the work performed by Marcus
Hanwell and Keith Fieldhouse in testing the new code
and merging it with VTK, and would also like to thank Bill
Hoffman, Will Schroeder and Ken Martin for allowing me
to be part of their open-source experiment for these past
twelve years.

David Gobbi is a software consultant in
Calgary, Alberta who specializes in software
for medical imaging and image-guided neu-
rosurgery. He received his Ph.D. from the
University of Western Ontario in 2003, and
has been contributing to the VTK wrapper
code since 1999.

12

request a test run of the project on any client that is pres-
ently available. Right now, only project administrators have
the privilege of scheduling builds. It should eventually even
be possible to have CDash observe whenever a commit is
made to a project’s repository and immediately start doling
out build instructions to waiting clients.

See the CDash Wiki page for more (and evolving) informa-
tion on build management. This feature is still in its infancy
and we could use your help to shape its future. Try it out and
send us feedback on the CDash mailing list with the subject
“CDash Schedule Builds Feedback”.

Scheduling BUILDS FOR YOUR CDASH PROJECT
First, you have to coordinate with your CDash server admin-
istrator to set $CDASH_MANAGE_CLIENTS to 1 in either the
cdash/config.php or cdash/config.local.php file.

Next, as project administrator, go to the Edit Project page and
check on the settings on the Repository tab. The “Repository”
and “Repository Viewer Type” settings need to be set. If you
don’t really have a repository viewer, choose a type from
that list that matches your repository anyway. CDash uses
that setting to generate the correct checkout and update
commands in the scripts that it sends to volunteer clients.

You can see a part of the script that CDash will send to the
clients on the “Clients” tab of the Edit Project page. You may
even customize it by modifying the script or adding to it as
necessary for your project.

Next, make sure the CTestConfig file checked into your reposi-
tory is correct. You may download an initial copy from CDash
if you don’t already have one. Click on the “Miscellaneous”
tab and look for the CTestConfig download link.

Next, set up some volunteers running “looping scripts”. On
each volunteer client machine, you should create a "Client"
directory, and then two sub-directories in Client named
"base" and "tmp"

In the Client directory, we need a site description xml file and
a looping script. On my client machines, I name the xml file
“$SITE.cdash.xml” and I name the script “CDashClient.ctest”.
The xml file should contain contents like this:

<?xml version="1.0" encoding="UTF-8"?>
<cdash>
 <system>
 <platform>Mac</platform>
 <version>SnowLeopard</version>
 <bits>64</bits>
 <basedirectory>/Users/davidcole/Client/base</base-
directory>
 </system>
 <compiler>

THE CDASH “@HOME” CLOUD

Imagine running a little program on your computer to volun-
teer your computing power to help keep your favorite open
source project in tip-top shape. Extend that to a swarming
cloud of volunteers running builds at your request and sub-
mitting results to your project’s dashboard. Soon, with the
help of CTest and CDash, you’ll be able to do just that.

We’ve created a feature in CDash called “build management”.
This feature allows users to request that a project build be
done on any client that has volunteered its resources. You
can try it out today if you have a checkout of CDash from svn
trunk. This feature is not fully implemented in the current
CDash 1.6 release, so you’ll have to use the bleeding edge
code to try it out.

The feature works through a polling protocol. A client
machine runs a CTest script that performs the following
steps. First, the client machine submits an xml file describing
its resources to CDash (submitinfo). The client then queries
CDash to get its corresponding “site id” (getsiteid). The
client then starts executing a loop, in which it queries CDash
for a job to do (getjob). If the client is given a job to perform
by CDash it does the job and reports the results, and then
continues the loop. Otherwise, the client sleeps for a while
and then continues the loop.

With several client machines connected and looping, query-
ing CDash for jobs to do, CDash can match build requests to
waiting clients.

After clients are set up and looping, a project administra-
tor may go to his “My CDash” page and schedule a build
by clicking on the “Schedule Build” icon. If no clients are
currently connected, then CDash will not allow you to sched-
ule builds. If clients are connected, you should see a list of
available clients, what OS each is running, and what compil-
ers each has available. As the build scheduler, you choose a
client to run the build on and click the “Schedule” button at
the bottom of the page.

After you schedule a build, the next time a client asks for
a job to do, CDash assigns it a job, sending a CTest script
back as the result. The client then executes that script, which
yields a new submission to the dashboard from that client.

As part of scheduling a build, you may: specify an alternate
repository from which to clone or checkout, specify initial
CMakeCache.txt entries, add a build name suffix to identify
an experiment in the dashboard results and choose which
configuration to build and test. Other settings are also
available in the CDash schedule build interface on the man-
ageClient.php page.

When submitting an xml file to CDash, use the normal
ctest_submit function in the CTest script. To query CDash for
information, use “file(DOWNLOAD” in the CTest script.

At present, running CDash as a build management system
involves setting things up on the server (server admin and
project admin) and on each client machine (volunteers) that
will be participating, as well as scheduling builds manually
(project admin). However, the vision for this feature moving
forward, is to make running CDash as a build management
system as automatic as possible. Anybody should be able to

13

<name>gcc</name>
 <version>4.2.1</version>
 <generator>Unix Makefiles</generator>
 </compiler>
 <cmake>
 <version>2.8.2</version>
 <path>/Applications/CMake 2.8-2.app/Contents/bin/
cmake</path>
 </cmake>
</cdash>

As you can see, this xml file gives CDash sufficient informa-
tion to know what OS your client is running, what compiler
and CMake version it has available and what CMake genera-
tor to use for configuring the build.

The full looping script is about 65 lines of CTest scripting
code, I’ll post this script to the Kitware Blog so we don’t
have to waste space here; the only part that’s different from
machine to machine looks like this:

set(CDASH_SITENAME "qwghlm.kitware")
set(CDASH_SYSTEMNAME "Mac-SnowLeopard-64bits")
set(CDASH_SITE_CONFIG_FILE "/Users/davidcole/Client/
qwghlm.cdash.xml")
set(CDASH_TEMP_DIRECTORY "/Users/davidcole/Client/
tmp")
set(CTEST_EXECUTABLE "/Applications/CMake 2.8-2.app/
Contents/bin/ctest")
set(CTEST_DROP_SITE "www.yourcompany.com")

After the looping scripts are running on a client or two (or
more!), you may go to the “Schedule Builds” interface of
CDash and request builds from them. Go to the “My CDash”
page, click on the “Schedule Builds” icon – it looks like a
floppy disk, you should see a page like this:

By default, you should be able to choose a client from the
“Site:” list and click on the “Schedule >>” button at the
bottom. However, you may wish to enter information into
any of the fields on that page to control various aspects of
the build.

A list of projects with “Schedule Build” icons

Let us know what needs improvement. Especially let us know
if you’d like to sponsor future work on this topic.

David Cole is an R&D Engineer in Kitware’s
Clifton Park office. David has contributed
code to the VTK, CMake, ITK, ParaView,
KWWidgets and gccxml open‐source projects
and to Kitware’s proprietary products includ-
ing ActiViz and VolView.

MULTI-RESOLUTION STREAMING IN
VTK AND PARAVIEW

ParaView's ability to process and visualize massive datasets
is based on VTK's streaming functionality. In ParaView, iden-
tical copies of the visualization pipeline are run on many
machines and each pipeline is asked to process a different
small portion, or piece, of the input data. Together the
machines process the entire dataset simultaneously, and no
machine ever exceeds the capacity of its local RAM.

Refinement at work in the analysis of a 3600x2400x42 chlorofluo-
rocarbon (CFC) concentration simulation study, being performed
on a 32-bit laptop PC. Yellow outlines identify “pieces”. At this

point, ParaView has progressed seven levels down into a nine level
deep piece refinement tree. Blue outlines show individual cells. At

the lowest level cells are already at sub-pixel resolution.

14

//the next call is very fast
double priority = filtersExec->ComputePriority();

if (priority > 0.0)
 {
 //the next call is potentially very slow
 aFilter->Update();
 vtkDataObject *data =
 aFilter->GetOutputDataObject(port);
 vtkInformation* dataInfo = data->GetInformation();
 double resultResolution = dataInfo->Get
 (vtkDataObject::DATA_RESOLUTION());
 }

ParaView 3.8 also includes AdaptiveParaView, another
experimental application which exercises this new multi-
resolution capability. Multi-resolution streaming begins by
rendering a single piece that covers the entire domain at
minimum resolution with the very first update giving the
user valuable feedback about the entire domain. This is a
great advantage over standard streaming in which global
information sometimes becomes apparent only when the
entire domain is covered at full resolution and after a much
longer delay.

Refinement of isosurfaces in the CFC data off the coast of
Newfoundland. A laptop computer is able to show the full resolu-
tion data since areas off-screen are ignored and only a few pieces

stay resident in memory at any given instant.

The adaptive streaming algorithm then recursively splits
pieces, increasing the resolution with each split, to show
the data in greater detail. As it processes pieces it gathers
meta-information (world extent and data ranges) and
uses this information to improve its importance estimates.
Throughout the algorithm, prioritization guides the choice
of which pieces need to be refined immediately, which can
be deferred, and which can removed from further consider-
ation. The algorithm eventually converges to processing just
the important features of the data at the fullest resolution.

The need for caching
Unfortunately streaming adds overhead. Every pipeline
update can take a significant amount of time. In standard
VTK, the pipeline internally caches intermediate results so
that data processing time can be amortized over many later
updates if those do not invalidate the results. Unfortunately,
changing the requested piece or resolution invalidates the
internal caches. We minimize the problem by aggressively
caching results at the end of the pipeline. In particular,
whenever the visible geometry is small enough, our cache
allows all of the data to be re-rendered in a single pass.

VTK's ability to break up data is called streaming, because
when the data can be divided it is also possible to iterate
over the pieces. In data parallel processing you stretch the
problem over a larger amount of RAM whereas in stream-
ing you stretch the problem over a longer time. Iterative
streamed rendering proceeds, for example, by rendering
each piece in turn without clearing the color or depth
buffer, using the persistent Z-buffer to resolve occlusion for
individual triangles both within a piece and across pieces.
In practice, streaming and data parallel processing are
orthogonal and can be combined by dividing the problem
into P sets of I pieces.

In many computational processes and especially rendering, it
is often the case that only a small fraction of the entire data
contributes to the end result. Prioritized streaming processes
only those pieces that contribute to the final result (ignor-
ing pieces that are off-screen, for example) and processes
them in a most important (i.e. nearest to the camera) to
least important order. This variation of streaming has great
benefits including eliminating unnecessary processing and
IO [1] and providing more immediate feedback to the user
to speed the data discovery process [2]. Prioritized streaming
is the basis for the experimental branded application called
StreamingParaView. StreamingParaView was first introduced
in ParaView 3.6.

VTK's streaming has an interesting feature in that it’s pos-
sible to ask for data in arbitrarily small chunks. Streaming is
driven by asking for different pieces at the downstream end
of the pipeline (ex vtkPolyDataMapper::SetPiece()). One asks
for smaller pieces by asking for pieces out of a larger set (ex v
tkPolyDataMapper::SetNumberOfPieces()). What is interest-
ing about this is that as the chunk size decreases - assuming
prioritization is in effect - the work done to produce a given
visualization approaches the minimal amount necessary.

We recently added the ability to ask for data at differing res-
olution levels to VTK's streaming support. It is now possible
to not only ask for arbitrary pieces, but also to ask for them
at arbitrary resolutions. The mechanics are similar to VTK's
temporal support [3]. One asks the pipeline to provide data
at a given requested resolution. This request is a dimension-
less number that ranges from 0.0 meaning lowest resolution
to 1.0 meaning full resolution. If unspecified, full resolution
is assumed. The request travels up the pipeline to the reader,
which decides how to interpret this number. Structured
data sources use the resolution to choose how coarsely to
subsample in the i, j and k dimensions and adjust their x, y
and z spacing to compensate accordingly. As in the temporal
pipeline, the result is free to vary from what was requested.
To support this, the reader inserts a resolution answer key
into the data it produces, which then travels back down the
pipeline to the requester.

The following is a code example from VTK which asks the
pipeline to: compute the priority for a particular piece at
a particular resolution, conditionally update the pipeline to
produce the requested piece and then examine the returned
resolution result.

vtkStreamingDemandDrivenPipeline * filtersExec =
 vtkStreamingDemandDrivenPipeline::SafeDownCast
 (aFilter->GetExecutive());

filtersExec->SetUpdateResolution
 (port, requestedResolution);
filtersExec->SetUpdateExtent
 (port, pieceNum, numPieces, ghostLevel);

15

In this situation, camera movement proceeds as fast as
it does in non-streaming ParaView. Despite caching, the
convergence process itself can take a significant amount of
time, therefore AdaptiveParaView has controls that allow
the user to pause and restart, limit, or manually control the
refinement process.

Conservative prioritization
A key point is that it’s generally impossible to know a priori
what pieces contribute the most or least without executing
the pipeline. This is unfortunate because the goal of priori-
tization is to avoid executing the pipeline on unimportant
data. Consider culling pieces that fall outside of the view
frustum. Many VTK readers can determine the initial world-
space bounding box of any requested piece. However filters
exist to change data, and any filter along the pipeline might
transform the data arbitrarily changing the bounding box
before the data is rendered. In order to find which pieces
are not visible, one must first know what the world space
bounding box of each piece is after that piece is processed
by the pipeline.

To solve this chicken and egg problem, a facility for per
piece meta-information propagation was added to the VTK
pipeline. Readers and sources can provide piece level meta-
information, and filters can describe what types of data
modifications they do. With information about what is pro-
vided and what is potentially changed, the pipeline is better
able to provide a conservative estimate of the importance of
any piece without doing any time consuming computations.
When either type of information is missing, the pipeline
falls back to the non-prioritized behavior of iteratively
processing every piece. See VTK/Rendering/Testing/Cxx/
TestPriorityStreaming.cxx for a demonstration.

FUTURE WORK
We continue to "refine" our implementation of adaptive
streaming. Our most immediate challenge is to improve the
client parallel server implementations of both streaming
applications. Currently, pure streaming requires too frequent
communication with the server to be efficient and adaptive
streaming has only been implemented to work with serial
mode ParaView runs.

Next, there are fairly major robustness and usability limi-
tations of our preliminary experimental prototypes. Our
current work is available in source format only and there are
outstanding unsolved issues regarding how to deliver global
up-to-date meta-information to the end user as computa-
tion progress.

Lastly, we are working to extend the work to be compatible
with more data formats. Our first streaming capable reader
reads simple raw structured data in either preprocessed or
raw format. For this data type, changing resolution is easily
achieved by sub-sampling [4]. We have since extended the
framework to handle cloud data, of which the LANL cos-
mology format was our first target. For this we devised an
importance sampling mechanism that chooses representa-
tive samples and limits the resolution so as not to overfill the
displayed image resolution.

We anticipate extending the framework to work on AMR
data, which has multi-resolution information written in
by the simulation codes that generate it; and to wavelet
compressed image data, as exemplified by NCAR's Vapor
Data Format files. Extending the framework to handle non-
preprocessed unstructured data types is a long-term goal.

REFERENCES
[1] Childs, H., Brugger,E., Bonnell, K., Meredith, J., Miller, M.,

Whitlock, B., Max, N. "A Contract Based System For Large
Data Visualization." Proceedings of the IEEE Visualization
Conference 2005.

[2] Ahrens, J., Desai, N., McCormick, P., Martin, K., Woodring,
J. "A modular extensible visualization system architecture
for culled prioritized data streaming." Proceedings of the
SPIE, 2007.

[3] Biddiscombe, J., Geveci, B., Martin, K., Moreland, K., and
Thompson, D. "Time Dependent Processing in a Parallel
Pipeline Architecture." IEEE Transactions on Visualization
and Computer Graphics, 2007.

[4] Ahrens J., Woodring J., DeMarle D., Patchett J., Maltrud
M. "Interactive Remote Large-Scale Data Visualization via
Prioritized Multi-resolution Streaming." Proceedings of the
UltraScale Visualization Workshop, 2009

David DeMarle is a member of the R&D team
at Kitware where he contributes to both
ParaView and VTK. He frequently teaches
Kitware's professional development and
training courses for these product applica-
tions and enjoys putting puns in Kitware
Source articles. Dave's research interests are

in systems level aspects of visualization, in particular memory
optimizations for parallel visualization of large datasets.

Jonathan Woodring is a new staff scientist in
CCS-7 Applied Computer Science at Los
Alamos National Laboratory. He received his
PhD in Computer Science from The Ohio
State University in 2009. His research inter-
ests include scientific visualization and
analysis, high performance supercomputing,

and data intensive supercomputing.

 James Ahrens is a team leader in the Applied
Computer Science Group at Los Alamos
National Laboratory. His research focuses on
large-data visualization and scientific data
management. Ahrens received his Ph.D. in
Computer Science from the University of
Washington and is member of the IEEE
Computer Society.

Community Spotlight

The following articles highlight how some of our commu-

nity members are utilizing Kitware’s open-source toolkits

and products in their own development environment. If you

would you like to be featured as a Community Spotlight, send

your article ideas and materials to editor@kitware.com.

Visualizing Deformable Suspension
Simulations in ParaView
Computational simulation of blood flow and dense
suspensions of deformable particles is only possible on
high performance computing resources using a highly
scalable computational approach such as the hybrid lattice-
Boltzmann / finite element (LB-FE) method. This method,
originally developed for rigid suspensions, was extended to
deformable red blood cells (RBCs), particles, capsules [1] and

16

Visualization of Data with ParaView
We have shown the ability to simulate thousands of deform-
able particles and capture non-Newtonian characteristics
that agree well with experimental observations [1]. Our
approach has shown the ability to scale on as many as 65,536
computational cores of Argonne National Laboratory’s IBM
Blue Gene/P [5]. When computing the dynamics of 1,000’s to
100,000’s of deformable particles suspended in fluid, datasets
can easily reach 1 terabyte or greater for a single simulation.
As an example, one such simulation with 100,000 deform-
able spheres (each with 254 triangular surfaces) requires a LB
fluid domain in excess of 2 billion lattice grid points.

When fluid and solid data sets from CFD codes are O(100
GB), the use of distributed memory architectures is required
for post-processing. Through the use of virtual network
computing (VNC) and access to visualization clusters like
Longhorn and Spur at the Texas Advanced Computing
Center (TACC) via NSF’s TeraGrid HPC network, visualizations
not possible on shared memory resources can be performed.
Visualization clusters like those at TACC offer multiple CPU,
multiple GPU nodes that are created specifically for these
applications. The following is an instantaneous snapshot of
a dense suspension of 2472 RBCs in a wall-bounded shear.

Future Work
Recent additions [6] have shown the ability to simulate dense
suspensions of RBCs in micro-vessel sized tubes at high shear
rates, in which large RBC deformations extend beyond the
assumptions of linear theory. This work is based on coupling
the LB method with a spectrin-link model [7] for the RBC
membrane.

References
[1] R. M. MacMeccan, J. R. Clausen, G. P. Neitzel, and C. K.

Aidun, “Simulating deformable particle suspensions using
a coupled lattice-Boltzmann and finite-element method,”
J. Fluid Mech., 618:13-39, 2009.

[2] J. Wu and C. K. Aidun, “Simulating 3D deformable particle
suspensions using lattice-Boltzmann method with discrete
external boundary force,” Inter. J. Num. Meth. Fluids,
62:765-783, 2009.

[3] J. Wu and C. K. Aidun, “A method for direct simulation of
flexible fiber suspensions using lattice Boltzmann equation
with external boundary force,” Inter. J. Multiphase Flow,
36:202-209, 2010.

[4] C. K. Aidun and J. R. Clausen, “Lattice-Boltzmann Method
for Complex Flows,” Annual Rev. Fluid Mech., 42:439-472,
2010.

fibers [2, 3]. The LB-FE method resolves the fluid phase, both
interior and exterior to the fluid-filled particles, with the LB
method. A recent review article [4] highlights the feasibility
of using the LB method for complex flows including suspen-
sion of deformable, particles, capsules and fibers.

We examine the dynamics of deformable capsules and how
these dynamics affect the rheology of dense suspensions
using the LB-FE method. Of particular interest are the par-
ticle pressure and a full characterization of normal stresses,
which are difficult to measure experimentally. The follow-
ing figure demonstrates a novel problem where the particle
microstructure affects the viscosity, normal stresses, and par-
ticle pressure of a suspension. The maximum viscosity and
first normal stress difference is obtained when particles are
aligned in a cluster along the compressional axis.

Red blood cells (RBCs), the most numerous constituent of
blood, influence continuum-level measurements by altering
the suspension at microscopic scales. In moderately-large-
sized arteries, the nature of blood can be described as a
macroscopic non-Newtonian fluid; however, flow in smaller
vessels requires treating human blood as a multiphase fluid
containing 40-45% RBCs by volume. Simulations of blood
at a cellular level provide a tool that allows exploration of
the rheology, stress, and diffusion of individual suspended
cells. In our approach, the blood plasma and hemoglo-
bin are treated as Newtonian fluids with viscosities of 1.2
and 6 cP, respectively. The multiphase nature of the blood
creates non-Newtonian flow effects, such as shear thinning,
commonly observed in experiments. An image of multiple
clusters forming in Hagen-Poiseuille flow is shown below.

17

[5] J. R. Clausen, D. A. Reasor, and C. K. Aidun, “Parallel
Performance of a Lattice-Boltzmann/Finite Element Cellular
Blood Flow Solver on the IBM Blue Gene/P Architecture,”
Comp. Phys. Comm., 181:1013-1020, 2010.

[6] D. A. Reasor, J. R. Clausen, and C. K. Aidun, “Coupling the
lattice-Boltzmann and spectrin-link methods for the direct
numerical simulation of cellular blood flow,” submitted to
Inter.l J. Num. Meth. Fluids, June 2010.

[7] J. Li, M. Dao, C. T. Lim, and S. Suresh, “Spectrin-Level
Modeling of the Cytoskeleton and Optical Tweezers
Stretching of the Erythrocyte,” Biophys. J., 88:3707-3719,
2005.

Dr. Cyrus Aidun joined the Woodruff School
of Mechanical Engineering at the Georgia
Institute of Technology as a Professor in
2003. He began at Tech in 1988 as an Assistant
Professor at the Institute of Paper Science
and Technology. Prior, he was at Battelle
Research Laboratories and was Senior

Research Consultant at the National Science Foundation's
Supercomputer Center at Cornell University.

Daniel Reasor received his Bachelor's and
Master's degree in Mechanical Engineering
from the University of Kentucky (2006, 2007).
He is currently a Ph.D. student at the Georgia
Institute of Technology performing research
focused on the direct numerical simulation
of cellular blood flow. He is funded by the

U.S. Department of Defense through the ASEE SMART fel-
lowship.

Dr. Jonathan Clausen received a Bachelor's
degree in Mechanical Engineering from
Clemson University in 2004 and a Ph.D. from
Georgia Institute of Technology in 2010. His
Ph.D. research focused on the rheology and
microstructure of deformable capsule sus-
pensions. Since July 2010, Jonathan Clausen

has been a Senior Member of Technical Staff at Sandia
National Laboratories.

Dr. Jingshu Wu has a Master's degree in
Aerospace Engineering (2004) and a Ph.D. in
Mechanical Engineering (2010) from the
Georgia Institute of Technology. His Ph.D.
research focused on the development of
methods for multiphase flow simulation.
Since June 2010, he has been an aeroacoustic

engineer at Vestas Technology R&D Americas.

Iturribizia on how XC utilizes VTK
XC is a program designed at our company, Iturribizia [1], to
solve structural analysis problems utilizing a finite element
method. The program can solve various types of problems,
from simple linear analysis to complex nonlinear simula-
tions. It has a library of finite elements which can be used to
modeling various geometries and multiple materials for use
in various areas of structural analysis.

MOTIVATION
Someone said that, when the French climber Lionel Terray
was asked about his reason to climb a mountain, he simply
said “because it was there”. Something similar happened

with the development of this program. I began the study
of the finite element method after studying the analyti-
cal solutions to elastic problems (so limited) and I became
greatly interested in their use in structural problems. This,
coupled with my love for computer science, made me decide
to develop a finite element program that would be useful to
calculate structures and could be modified and expanded in
any way the user wanted.

First I wrote a Pascal version of the program which only
worked with bar-type elements. Then I wrote a C++ version
“from scratch” that was never able to solve any nontrivial
problem. Finally, I discovered the possibilities offered by the
calculation core of Opensees and decided to modify it to
be suitable for an “industrial environment” (as opposed to
academic use).

To achieve this objective, several significant modifications to
the original code were required. Algorithms for generating
finite element mesh were incorporated, allowing the modeler
to create structured grids from the description of geometry
by means of points, lines, surfaces and solids. Graphics were
generated using the VTK library (we give more details on
this later.) A new macro language was developed to make
it possible to obtain the results produced by the calculation
without having to extract them from predefined listings. This
provides the program with the ability to interpret a sentence
like “get the ratio between the vertical displacement of the
node closest to the center of the beam and the total span of
the beam”. Utilities for the construction and calculation of
design load combinations prescribed by the building codes
(EHE, ACI 318, EAE, Eurocodes, etc.) were implemented to
facilitate the verification of design requirements. The ability
to activate and deactivate elements was introduced to
enable the analysis of structures built in phases, geotechni-
cal problems, and the strengthening of existing structures.
Macros were written to verify the structure and its elements
according to the criteria prescribed by building codes (e.g.
axial and bending capacity, shear reinforcement). The code
was changed to link with “standard” linear algebra libraries
(e.g. BLAS, Arpack, LAPACK, SuperLU), eliminating the need
to include in the program “ad-hoc” versions of these librar-
ies. Finally, the material models were modified to support
prescribed strains, making it possible to solve problems
involving thermal and rheological actions.

DESIGN GUIDELINES
With the experience obtained from previous development
works we arrived at the following conclusions: test, test
carefully and test again; do not reinvent the wheel do not
waste time in developing an elegant GUI; and while building
codes change, physical laws do not.

Testing
For each functional element of the program a test should be
written to verify the correctness of the code. Also after each
code modification it must be verified that every one of the
tests still execute successfully. Once an error is detected and
corrected we must write a test to verify that the error will
not happen again.

Reinventing the Wheel
Rather than starting from scratch every time you need to
introduce something to your code, seek out open source
libraries. We’ve learned to use open source libraries (such as
VTK) as much as possible. Make sure that these libraries are
easily accessible via the Internet.

18

Three procedures are used for graphic generation. VTK is
used to generate bi- or three-dimensional graphic informa-
tion for the values presented by a scalar or vector field in the
finite element mesh. Gnuplot [2] is used to generate graphs
of functions or numerical data, such as that in Figure 1. The
plotutils library is used to generate Postscript graphics.

Tools for calculating multiple design load combinations
The program should facilitate both the linear and non-linear
calculation of multiple load combinations. Modern building
codes require knowledge of a structure’s response to a large
number of combinations (from a few hundred in simple
building structures to more than a thousand in structures
with moving, thermal and seismic loads). Checks are needed
for each of these combinations depending on whether the
structure is made of steel, concrete, or wood and special
parts (pins, anchor bolts).

When the calculation is linear, the response to the load com-
bination may be obtained as the sum of responses to each
load. On the contrary, when the analysis must be non-linear
it's necessary to find a solution for each of the combinations
using any intermediate results already obtained.

Tools for performing design checks
The design of a structure in accordance with the require-
ments of building codes is often based on the application
of various criteria. In terms of stability it is necessary to
check the balance of the structure and safety from buckling
phenomena. A material’s resistance needs to be tested to
determine the maximum strains and stresses that the mate-
rial can withstand. A structure’s stiffness needs to be tested
to determine its maximum allowable displacement (limits on
beam deflection, collapse). These quantities, in general, can
be approximated from the displacement of closest node in
the model. A structure’s dynamics is tested in terms of its con-
ditions of comfort and to ensure that its natural frequency
values vary enough from its excitation frequency. Lastly, the
fatigue strength of the structure is determined based on the
structure’s capacity to withstand cyclic loading.

Mesh generation tools
The task of creating a finite element mesh that properly
models a civil engineering structure (a building, dam, bridge)
is one of the most time-consuming because the geometry
of its elements rarely supports analytical representation.
Moreover, the presence of holes and voids in the structures
themselves and other structural reinforcements make the
model even more complex. In some structures it is necessary
to model pre-stressed tendons embedded in concrete or
other similar items.

GRAPHICAL OUTPUT
To give the program the ability to plot the results from analy-
sis we take into consideration the following possibilities:

•	 Programming the graphical output interface directly using
OpenGL, present in almost any recent computer.

•	 Using OpenDX, an open-source library based on IBM Open
Visualization Data Explorer.

•	 Using Kitware’s VTK library.

Besides the problem of deciding which interface to use,
there was the need to determine how the program would
generate graphics. There were two options: develop a set
of pre-defined graphics with adjustable appearance param-
eters that could be used to display displacements, stresses,

GUI Development
Don’t waste time developing an elegant GUI. Graphical user
interfaces make the users believe that they know how to
use the program. These types of interfaces make possible to
take a trial and error approach which, in our view, may be
appropriate to handle a word processor in which the result is
visible, but not so much for a computer program whose man-
agement requires a thorough review of the input data and
design assumptions. On the other hand the use of an inter-
preted language provides much higher flexibility. Consider a
line segment definition that may involve two points, a point
and a vector, a point, a length and an angle or the intersec-
tion of two planes. This flexibility is very difficult to achieve
with a graphical user interface.

The Laws of Physics
While building codes are subject to change, physical laws
remain constant. In structural engineering we still use
Newton mechanics to solve mechanical problems. The
algorithms that solve these types of equations (equilibrium,
kinematic, etc.) should be written in C++ as these algorithms,
by nature, are unlikely to change.

On the other hand, building codes are periodically renewed
due to advances in understanding the behavior of materi-
als and the greater demands of society regarding the level
of quality required for its infrastructures. Consequently,
and since there is no need to hide the code to the user, we
use procedures written as scripts (that are easy to modify)
to implement the verification of design requirements from
building codes.

FEATURES
This section covers the program’s features that make it par-
ticularly suitable for use in structural design applications.

Tools for reporting
The program must have utilities that make it easy to gener-
ate reports, both numerical and graphical, which are ready
to be included in structural design reports. The basis of this
report generation system is the use of the LaTeX document
preparation system.

Figure 1: Steel material model

19

strains, loads, etc., or design a command language which
would be a means through which users could define the
graphical output.

The first approach is commonly used in some matrix structural
analysis computer programs and other programs oriented to
specific tasks such as slope stability analysis or solving plane
elasticity problems. The main disadvantage of this solution
is that it’s very difficult to apply to situations that were not
previously considered by the programmer.

The second solution is used in the majority of the general
purpose finite element codes (ANSYS, Abacus). Its funda-
mental difficulty is the design of a command language that
is flexible enough and easy to use. During analysis of this
solution we studied other program manuals (ANSYS, Abacus,
Solvia, Calculix Graphix) to determine the features needed
for the command language.

Figure 2: View of a cone generated with the script from Table 1

After studying both solutions we decided that the first was
almost unworkable if we wanted the program to be able to
treat multiple types of problems (e.g. analysis of buildings,
bridges, reservoirs).

The second was more appropriate to deal with the problem
since it provides the users with the tools they need to display
results and, in some way, transfer the task to them. Once the
solution was chosen, we had to design a command language
powerful enough to generate graphics allowing the use of
all options (transparency, lighting, textures) that modern
computer graphics offer. Here the potential of VTK came
into play.

The VTK library is written in C++ (the same language used for
the remainder of the program), making it quite easy to call
it from the rest of the code. The availability of some script
languages (Tcl, Java and Python) in VTK made us realize that
the command language design was already done (the VTK
API itself) and all we had to do was move it to our own script
language used by the rest of the program. Proceeding in
this manner, we enabled the use of VTK for any purpose the
user desires as opposed to just making the code available for
finite element model representations. Figure 2 (which will
be recognizable to all those familiarized with the examples
supplied with the VTK package) shows the results of the
macro shown in Table 1. A more complex example can be
seen in Figure 3.

Figure 3: Shell finite element model of a bridge deck

\vtk
 {
 \define["vtkConeSource","cone"]
 { \altura{3.0} \radio{1.0} \resol{10} }
 \define["vtkPolyDataMapper","coneMapper"]
 { \set_input{"cone"} }
 \define["vtkActor","coneActor"]
 { \set_mapper{"coneMapper"} }
 \define["vtkRenderer","ren1"]
 {
 \add_actor{"coneActor"}
 \set_background{0.1,0.2,0.4}
 }
 \define["vtkRenderWindow","renWin"]
 { \add_renderer{"ren1"} \set_size{1024,768} }
 \define["vtkRenderWindowInteractor","iren"]
 { \set_render_window{"renWin"} }
 \define["vtkInteractorStyleTrackballCamera",
 "style"]
 {}
 \iren{\set_interactor_style{"style"}}
 \iren{\initialize{} \start{}}
}

Table 1: Script to display the cone on figure 2

ACKNOWLEDGEMENTS
Many thanks to all the people who contribute to open
source, without their effort this work would not have been
possible. Thanks to Professor Filip C. Filippou and Frank
Mackenna from the Department of Civil and Environmental
Engineering at the University of California, Berkeley for
their email correspondence. Thank you to my family for their
patience as I worked on the development of this software
package. And thank you to my friends Raul Hernandez and
Tomas Sanz for their encouragement.

REFERENCES
[1] Iturribizia may be downloaded here:
 http://www.iturribizia.com/descarga software.html.
[2] http://www.gnuplot.info

Luis C. Pérez Tato was born in Madrid (Spain)
in 1965. Studied civil engineering at the
"Universidad Politécnica de Madrid". His
work has been related to computer pro-
gramming since 1988 and to structural
analysis since 1992. Has developed programs
in the fields of structural analysis, geographic

information systems an dam instrumentation.

20

The team will also continue to develop and apply cutting-
edge research into the hard problems in descriptors, indexing,
iterative query refinement, and descriptor fusion. One of the
many research thrusts in Phase II will be to incorporate more
computed and supplied scene knowledge directly into the
descriptors, and to more effectively leverage available meta-
data such as view point and sun angle. Augmenting system
capabilities to allow for additional video sources, both from
UAV’s and ground cameras, will also be a top priority.

To meet the Phase II program’s needs, Kitware has combined
the majority of the Phase I participants into a single unified
team including six leading defense technology companies:
Honeywell Laboratories – ACS; Raytheon BBN Technologies;
Mayachitra, Inc.; BAE Systems – Technology Solutions;
General Dynamics; and Lockheed Martin Missiles and Fire
Control Autonomous Systems. Lockheed Martin will serve as
the system integrator for this Phase II effort. Multiple inter-
nationally-renowned research institutions round out the
world-class team, including: the Computer Vision Laboratory,
University of Maryland; Rensselaer Polytechnic Institute; the
Computer Vision Lab at the University of Central Florida;
the University of California, Riverside; the University of
Southern California; Massachusetts Institute of Technology;
the University of Texas at Austin; California Institute of
Technology; Cornell University; Stanford University; the
University of California, Berkeley; the University of California,
Irvine; and Columbia University.

Phase II is expected to take 18 months to complete, and will
be led by Anthony Hoogs and Amitha Perera at Kitware.

Kitware Awarded NIH Grant to Improve
Lesion Biopsy Using PET-CT Imaging
Kitware received a one-year grant from the National Institutes
of Health (NIH) totaling $228,458 to improve the clinical
effectiveness of liver lesion biopsy using PET-CT imaging. The
project will extend the open source Image Guided Surgery
Toolkit (IGSTK) to enable the fusion of motion corrected PET
images with CT images for liver lesion biopsy.

The main focus of the project will be the development of
a robust respiratory motion correction technique aimed at
producing more effective PET-CT guided biopsies. Kitware
and its team of researchers will develop a respiratory motion
correction algorithm to help develop a better technique,
which decreases errors in imaging caused by artifacts like
organ sliding which can occur just from the natural respira-
tion process.

''While PET imaging can localize malignancies in tumors
that do not have a CT correlate, the diagnostic benefit is
often gravely affected by basic respiratory motion,'' said Dr.
Andinet Enquobahrie, technical lead at Kitware and one of
the principal investigators for the project. "The difference
in acquisition times between PET and CT data often leads
to discrepancy in spatial correspondence which then causes
problems with tumor localization. With this grant, Kitware
will develop robust respiratory motion correction technique
to correct this and reduce incorrect tumor staging."

Kitware will team up with Dr. Kevin Cleary at Georgetown
University for development of some of the components and
clinical evaluation of the system. Under the leadership of
Dr. Cleary, the Computer Aided Interventional and Medical
Robotics (CAIMR) group at Georgetown has developed a
number of applications for improving the accuracy of inter-
ventional procedures. Kitware and Dr. Cleary have a long and

DARPA Awards Kitware $11 Million for
Phase II of VIRAT Program
Kitware has received an $11 million contract from the
Defense Advanced Research Projects Agency to lead Phase
II of its Video and Image Retrieval and Analysis Tool (VIRAT)
program. Kitware was selected to lead the sole Phase II
award based on the success of their Phase I effort.

In Phase II of VIRAT, Kitware will lead the development of
the second-generation VIRAT system, a revolutionary video
analysis capability that filters and prioritizes massive amounts
of archived and streaming video based on events; presents
the high-value intelligence content clearly and intuitively
to video analysts; and results in substantial reductions in
analyst workload while increasing the quality and accuracy
of intelligence yield.

The VIRAT system is focused on aerial surveillance video
taken from Predators and other drones. VIRAT automati-
cally extracts descriptors of events and human actions in the
video, emitting real-time alerts of events of interest. The
system also indexes the descriptors into a database to enable
subsequent search for similar and related events. Specific
examples of distinguishable events range from single-
person (walking, limping, gesturing) and person-to-person
(meeting, following, gathering) behaviors to person-vehicle
interactions, among others.

A visualization of a video query result where each purple tower is a
video clip retrieved from a video archive. Height indicates the level
of similarity to a query video clip supplied by a video analyst. The
analyst can browse the result clips in 3D+time by watching all clips

play simultaneously on the towers.

In Phase I, the Kitware team developed a number of novel
algorithms and systems to address the VIRAT problem,
including: algorithms capable of detecting and tracking
small, slow-moving objects over time; a large bank of state-
of-the-art, complementary action and object descriptors that
can capture track-level and articulated events; algorithms
for using analyst feedback to iteratively refine queries to
quickly determine analyst intent; and innovative techniques
for indexing and searching the descriptor database.

In Phase II, the Kitware team will deploy a VIRAT prototype at
an end-user facility, and train analysts in its operation. Their
evaluation and feedback will provide researchers with criti-
cal data to incorporate into upgrades and enhancements.

KITWARE NEWS

21

productive relationship collaborating on several NIH-funded
STTR, SBIR and RO1 projects over the past five years. In addi-
tion, the research team has contracted two consultants with
extensive expertise in PET imaging and clinical use of PET-CT
imaging for interventional procedures.

Upon completion, the system will display the motion-
corrected, fused and side-by-side, PET and CT images for
interventional radiologists to view. Electromagnetic tracking
of the needle tip using the image-guided system will provide
continuous monitoring of the needle relative to the PET and
CT images. The radiologist would then use this virtual image
display of metabolic and anatomic information to guide the
needle to the lesion. This system will enable future applica-
tions beyond biopsy, such as ablations and the delivery of
other minimally invasive therapies.

Kitware Ranks #1655 on the 2010 Inc. 5000
with Three-Year Sales Growth of 172%
Kitware has made the Inc. 5000 list for the third year in a
row, with a ranking of 1655. The Inc. 5000 is a listing of the
fastest-growing, privately-held companies in America. The
list represents the most comprehensive look at the most
important segment of the economy—America’s independent-
minded entrepreneurs. Music website Pandora, convenience
store chain 7-Eleven, Brooklyn Brewery, and Radio Flyer,
maker of the iconic children’s red wagon, are among the
prominent brands featured on this year’s list.

“The leaders of the companies on this year’s Inc. 5000 have
figured out how to grow their businesses during the longest
recession since the Great Depression,” said Inc. president
Bob LaPointe. “The 2010 Inc. 5000 showcases a particularly
hardy group of entrepreneurs.”

Over the last 12 months, Kitware has grown its workforce by
28% and is continuing to hire to fill positions in computer
vision, medical imaging, informatics, scientific visualiza-
tion and open access publishing. For more information on
Kitware’s hiring needs, please visit kitware.com/jobs.

Complete results of the Inc. 5000, including company pro-
files and an interactive database that can be sorted by
industry, region, and other criteria, can be found on www.
inc.com/5000.

Methodology
The Inc. 5000 is ranked according to percentage revenue
growth from 2006 through 2009. To qualify, companies must
have been founded and generating revenue by the first
week of 2006, and therefore able to show four full calen-
dar years of sales. Additionally, they have to be U.S.-based,
privately held, for profit, and independent as of December
31, 2009. Revenue in 2006 must have been at least $100,000,
and revenue in 2009 must have been at least $2 million.

Kitware Participates in Military Open
Source Software Working Group
In August, Kitware participated in the second iteration of
the Military Open Source Software Working Group (MIL-
OSS). The company has had representatives at each of the
iterations of this working group which aims to grow open-
source adoption and contribution within the Department
of Defense and its burgeoning contractor community. This
year's conference featured speakers from each branch of the
armed services as well as speakers from companies dedicated
to open source such as Redhat and Puppet Labs.

Lockheed Martin had representatives to present their work
on Eureka Streams, a new open-source project sponsored and
developed within that company, which is perhaps an illustra-
tion of the greater movement toward open source software
within the government contracting community. Seeing the
large, traditional defense contractors embrace open-source
and contribute back to the community is a testament to the
growth in awareness of open technology in recent years.

The Defense Information Systems Agency (DISA) also
spoke about their work with Collabnet (the custodians of
Subversion) to develop Forge.mil, a Source Forge for “com-
munity source” projects within the military. This allows
projects that are deemed too sensitive in nature for public
consumption to be shared within the government and other
trusted entities. Forge.mil and traditional open-source seem
to have a bright future in the years ahead.

Kitware's Patrick Reynolds and Chuck Atkins participated in
many of the lively panel discussions and after-hours philo-
sophical arguments about how the DoD can best benefit
from open source. Mr. Reynolds was given the opportunity
to give an Ignite presentation on “Open-Source Continuous
Integration using CMake and CDash” during one of the
speaking sessions. Ignite talks are five minute talks with 20
slides that auto-advance every 15 seconds. The six Ignite
speakers presented at breakneck speed over topics as diverse
as large-scale system administration and combat-relevant
position-location information.

As Kitware's business involves collaboration with more and
more traditional defense contractors, interactions with
vibrant communities like MIL-OSS will help broaden the
reach of open source within government.

Kitware and the NA-MIC community
announce Alpha Release of 3d Slicer 4.0
3D Slicer is an open-source (BSD-style license) platform for
medical image segmentation, registration, visualization and
analysis. It represents a practical integration of innovations
from a multitude of fields including medical image analysis,
cross-platform software development, collaborative soft-
ware development and extensible platform design. Kitware
has been closely involved in many of these innovations. In
particular, 3D Slicer builds upon ITK, VTK, CMake, CDash,
CTK and MIDAS.

Slicer is funded by grants associated with the National
Alliance for Medical Image Computing (NA-MIC) and the
Neuroimaging Analysis Center (NAC) and has an extensive
community behind it. The lead institute for these multi-insti-
tutional centers is Brigham and Women's Hospital (BWH).
Other funded participants include the University of Utah,
GE Corporate Research, the University of North Carolina at
Chapel Hill, Georgia Tech, Johns Hopkins, MIND Institute,
MIT, MGH, UCLA, and many others.

22

To date, 3D Slicer contains 95+ modules that cover a large
range of applications including tractography, endoscopy,
tumor volume estimation, image guided surgery and more.
Special attention has been given to documenting each
module and creating tutorials that cover many of the most
common use-cases for Slicer. Over 400 publications acknowl-
edge funding from one or more Slicer-related grants. Those
publications span a wide range of medical, biomedical, phar-
maceutical, and other basic and applied science domains.

Version 4.0 of 3D Slicer is a systematic rewrite of the Slicer
platform. The main Slicer application now adheres to high
programming standards (e.g., unit tests and a clean model-
view-controller design) and has adopted Qt for its GUI.
Compared to Slicer 3.X, Slicer 4.0 has cut the number of lines
of code necessary for most features by 70 percent. Slicer 4.0
is faster, more stable, more extensible, and more developer
and user friendly than Slicer 3.X. Tcl is gone and has been
replaced by Python and CMake’s Superbuild. The modules’
user interface can be effortlessly generated using Qt Designer
to allow the programmer to focus on algorithms.

Slicer 4.0 alpha (developer) was release in early September.
The Beta release is scheduled for December 2010 and the full
Slicer 4.0 release is scheduled for February 2011. However,
much of the Slicer 4.0 platform is already complete. We are
encouraging our friends to begin using Slicer 4.0 now to
ensure it achieves the lofty, yet practical goals we have set.

To learn more about the NA-MIC community, visit namic.org,
to download Slicer, visit slicer.org and to browse the collec-
tion of Slicer-related publications (hosted on MIDAS), visit
slicer.org/publications.

Contrast enhanced CT (with the stereotactic frame of a
gamma-knife device), anatomical MRI and diffusion tensor
MRI have been registered and segmented to produce this
image. Fiber tracking allows the clinician to examine brain
connectivity. Neurosurgeons use such fused views to deter-
mine tumor margins and surgical paths. This image was
generated using 3D Slicer. In particular, 3D Slicers' affine reg-

istration module, DTI fiber tracking module, and connected
component segmentation module were used. All of these
modules are built using VTK and ITK and are available as open-
source as part of the 3D Slicer distribution. This image was
generated by Andras Jakab, University of Debrecen, Medical
School and Health Science Center, Hungary. This image won
2nd place in the 2008 Best Biomedical Visualization Contest
hosted by Kitware (The Source volX issueY).

ITKv4
Ten years ago, the National Library of Medicine initiated a
software development program to produce an open-source
toolkit for the segmentation and registration of medical
images, in particular the Visible Man and Visible Woman
data. The outcome of that program was the Insight Toolkit
(ITK). From those humble beginnings, ITK is now used in basic
and applied research, commercial medical image processing
and surgical guidance systems around the world.

It is estimated that ITK is contributing to projects in over 45
countries and in nearly every major academic and industry
research lab involved in medical image analysis. Applications
areas include radiology, neurology, pathology, oncology,
neurosurgery and even satellite imagery. Data being pro-
cessed by ITK includes nearly every medical imaging modality
such as electron microscopy, MRI, CT, PET, ultrasound, video
and OCT.

This year, ITK will be going through a major refactoring
process to ensure its vitality for the next ten years. The main
goals of the refactoring process are:

•	 Revise the ITK architecture to support modern algorithms
and to adopt a module-based architecture that supports
development and distribution of optional extensions and
specialization of ITK for specific problem domains (e.g., a
“4D confocal microscopy” module for ITK).

•	 Simplify the use of ITK by offering the power of ITK in
intuitive packages the seamlessly integrate with Python,
Java, and other programming languages.

•	 Accelerate the algorithms of ITK by supporting distributed
and GPU-based processing.

•	 Improve DICOM support in ITK so that its use of clinical
data and integration into clinical workflows is assured.

The new version of ITK will be designated ITKv4. ITK 3.20 will
be the stable and reliable release offered to users during the
time ITKv4 is being developed.

In this refactoring, ITK will be improving its support for
domain fields beyond radiology. In particular, we will be
working closely with application developers in the fields of
microscopy, remote sensing and computer vision. Providing
better support for these domains will require the need to
introduce changes and improvements in ITK for fundamental
features such as support for very large images (larger than
4GB), support for multi-channel images and the addition
of support for new file formats (i.e., LSM, TIFF variations,
JPEG2000, among others).

Information about the modifications to ITK will be dissemi-
nated following the "Release Early, Release Often" rule of
Open Source software development. We've started with an
initial clean up of the toolkit, following the migration plan
described on the ITK Wiki and schematically described below.
As you can see, one of the first steps was moving from CVS
to Git. You can now clone ITK by following the instructions
provided on the ITK Wiki.

23

The work in ITKv4 will be performed collaboratively between
multiple groups including, but not limited to: GE Research
/ the Mayo Clinic, the University of Iowa, the University of
Pennsylvania, Harvard University, Cosmo and Kitware.

The design and development activities will be coordinated
on the ITK developer’s mailing list and through an ITK con-
ference call. Both of these venues are open to the public and
we encourage all users to join these events and contribute
their points of view to the process. In order to coordinate
the work of the approximately 30 developers contributing
to ITK’s redesign, we have also put in place a code review
process based on Gerrit, a tool that is also used by the
Android community. The current workflow of software
patches is summarized in the image below.

As the development process settles in, this workflow will
likely be readjusted in order to better accommodate the
needs of the ITK development community. We look forward
to working with the larger community of ITK users to make
sure that ITKv4 is a useful and powerful resource for many
different applications.

Kitware awarded administrative
supplement for Neurosurgery Simulation
Kitware was awarded an administrative supplement by the
National Institutes of Health (NIH) to fund the purchase of a
multi-GPU computer produced by RenderStreams, Inc.

This supplement dovetails on a two-year grant from the NIH,
totaling more than $600,000, to focus research efforts on
developing approach-specific, multi-GPU, multi-tool, high-

realism neurosurgery simulation The computer will enable
the computational acceleration of several processes simul-
taneously in the context of a neurosurgery simulator. This
includes an emphasis on multi-grid finite elements for tools
that manipulate tissue and multi-grid meshless methods
with one GPU assigned per resolution level.

The goal of the research is to work toward an interactive
simulator that replicates future neurosurgery cases of young
surgeons, enabling hospitals faced with compressed intern
schedules to accelerate training and improve skills.

late Fall/Winter Conferences and Events
ACCV 2010
November 8 – 12, in Queenstown, New Zealand. ACCV 2010
is the tenth Asian Conference on Computer Vision. Amitha
Perera will be in attendance. http://www.accv2010.org/

SC10
November 13 – 19, in New Orleans, Louisiana. SC10 is a plat-
form for HPC researchers and developers to demonstrate,
debate and discover innovative, cutting-edge advances
in computation, networking, storage, and analysis. Andy
Bauer, Berk Geveci, Bill Hoffman and Will Schroeder will be
in attendance. http://sc10.supercomputing.org/

RSNA 2010
November 28 – December 3, in Chicago, IL. Rick Avila will be
presenting at the RSNA 2010 Quantitative Imaging Reading
Room during the RSNA annual meeting. Rick and Stephen
Aylward will be giving a talk on open source in medical
image analysis. Kitware will be exhibiting in Hall D Lakeside
Center Level 3. Wes Turner and Brad Davis will also be in
attendance. http://rsna2010.rsna.org/

IEEE Winter Vision Meeting 2011
January 5 – 7, in Kona, Hawaii. Anthony Hoogs will be attend-
ing the Workshop on Applications of Computer Vision which
will include tracks on Biometrics and Motion and Video
Computing. http://vision.cs.byu.edu/wvm2011/wvm.php

New Employees
Lynn Bardsley
Lynn joined Kitware as a Program Manager for the Computer
Vision Group in July. She received her M.S. in Computer
Science from Union College.

Dhanannjay Deo
Dr. Deo joined Kitware as a member of the Scientific
Visualization Group in August. He received his B.S. in
Mechanical Engineering from the University of Pune, his
M.S. from the Indian Institute of Science and his Ph.D. from
Rensselaer Polytechnic Institute.

Xiaoxiao Liu
Xiaoxiao joined Kitware as a member of the Medical Imaging
Group in September. She received a B.E. in Computer Science
and an M.E. in Pattern Recognition and Intelligent Systems
from Huazhong University of Science and Technology and
her Ph.D. in Computer Science from the University of North
Carolina at Chapel Hill.

Danielle Pace
Danielle joined Kitware as a member of the Medical Imaging
Group in July. She received her B.CmpH in Biomedical

24

Kitware’s Software Developer’s Quarterly is published by
Kitware, Inc., Clifton Park, New York.

Contributors: James Ahrens, Cyrus Aidun, Lisa Avila, Michel
Audette, Stephen Aylward, Sophie Chen, Jonathan Clausen,
David Cole, David DeMarle, Julien Finet, Jean-Christophe Fillion-
Robin, Marcus Hanwell, Bill Hoffman, Luis Ibáñez, Brad King,
Nicole Messier, Dave Partyka, Daniel Reasor, Patrick Reynolds,
Luis Pérez Tato, Wes Turner, Jonathan Woodring, Jingshu Wu.

Graphic Design: Steve Jordan
Editor: Niki Russell

Copyright 2010 by Kitware, Inc. or original authors.

The material in this newsletter may be reproduced and distributed
in whole, without permission, provided the above copyright is kept
intact. All other use requires the express permission of Kitware, Inc.
Kitware, ParaView, and VolView are registered trademarks of Kitware,
Inc. All other trademarks are property of their respective owners.

To contribute to Kitware’s open-source dialogue in future
editions, or for more information on contributing to specific
projects, please contact the editor at editor@kitware.com.

In addition to providing readers with updates on Kitware
product development and news pertinent to the open source
community, the Kitware Source delivers basic information
on recent releases, upcoming changes and detailed technical
articles related to Kitware’s open-source projects, including:

•	 The Visualization Toolkit (www.vtk.org)

•	 The Insight Segmentation and Registration Toolkit (www.itk.org)

•	 ParaView (www.paraview.org)

•	 The Image Guided Surgery Toolkit (www.igstk.org)

•	 CMake (www.cmake.org)

•	 CDash (www.cdash.org)

•	 MIDAS (www.kitware.com/midas)

•	 BatchMake (www.batchmake.org)

Kitware would like to encourage our active developer
community to contribute to the Source. Contributions may
include a technical article describing an enhancement you’ve
made to a Kitware open-source project or successes/lessons
learned via developing a product built upon one or more
of Kitware’s open-source projects. Authors of any accepted
article will receive a free, five volume set of Kitware books.

Computing from Queen's University and M.ESc. in Biomedical
Engineering from The University of Western Ontario.

Ben Payne
Ben joined Kitware as a member of the Medical Imaging
Group in September. He received his B.S. in Applied Science
with a focus on Computer Engineering from the University of
North Carolina at Chapel Hill and his M.S. in Computer Science
from the University of Illinois at Urbana-Champaign.

Zhaohui Harry Sun
Dr. Sun joined Kitware as a member of the Computer Vision
Group in June. He received his B.E. and M.E. degrees in
Electrical Engineering and Information Science from the
University of Science and Technology of China, and his M.S.
and Ph.D. in Electrical and Computer Engineering from the
University of Rochester.

Nicole Wardle
Nicole joined Kitware's as a member of the Computer Vision
Group in September. She received her B.S. and M.S. in
Computer Science from Rensselaer Polytechnic Institute.

Matthew Woehkle
Matthew joined Kitware as a member of the Computer
Vision Group in August. He received his B.A. in Computer
Science and Mathematics from Concordia University.

Ted Yapo
Ted joined Kitware as a member of the Computer Vision
Group in July. Ted recieved his B.S. and M.S. in Engineering
Physics from Rensselaer Polytechnic Institute.

Kitware to Offer Online Paraview course
Starting in November, Kitware will be offering instructor-
led online courses covering our open-source products. This
will allow our global community to obtain training without
the hassle or expense of long distance travel. Each short
session will be targeted at a specific topic and topics will
be offered frequently, allowing our users to easily fit this

productivity-boosting training into their busy schedules. For
more information about the new online courses, visit our
website and select Training Courses from the Product menu.
For information about scheduling a customized course at
your location, please contact us at courses@kitware.com.

Kitware goes international
To better serve our international customers and collaborators
Kitware is opening two new offices. The first, in Lyon, France,
will be lead by Julien Jomier. Julien has been instrumental in
developing MIDAS, Kitware's Scientific Data Management
system, and has extensive experience in medical imaging
and agile software process. The second office, in Bangalore,
India, will be led by Karthik Krishnan. Karthik is an expert
developer with deep knowledge of both VTK and ITK, as
well as medical application development.

These two offices reflect Kitware's growing global presence.
Our software is used worldwide in commercial, research,
educational and government applications. These offices
will enable Kitware to respond rapidly to customer needs,
provide cost-effective support and consulting services, hire
outstanding talent across the globe and collaborate more
closely with our international partners. Please contact
Kitware if you would like further information.

employment opportunities
Kitware is seeking candidates for the following software
development positions: Informatics, Biomedical Imaging,
Computer Vision, and HPC Visualization and Data Analysis.

Our comprehensive benefits package includes flex working
hours, six weeks paid time off, a computer hardware budget,
401(k), medical insurance, dental insurance, vision insurance,
flexible spending account (FSA), life insurance, short- and
long-term disability, visa processing, a generous compensa-
tion plan, bonus, and free coffee, drinks and snacks.

Interested applicants should forward a cover letter and resume
to jobs@kitware.com to ensure their immediate consideration.

